Processing and Classification of Physiological Signals Using Wavelet Transform and Machine Learning Algorithm

Processing and Classification of Physiological Signals Using Wavelet Transform and Machine Learning Algorithm
Title Processing and Classification of Physiological Signals Using Wavelet Transform and Machine Learning Algorithm PDF eBook
Author Abed Al-Raoof Bsoul
Publisher
Pages
Release 2011
Genre Arrhythmia
ISBN

Download Processing and Classification of Physiological Signals Using Wavelet Transform and Machine Learning Algorithm Book in PDF, Epub and Kindle

Over the last century, physiological signals have been broadly analyzed and processed not only to assess the function of the human physiology, but also to better diagnose illnesses or injuries and provide treatment options for patients. In particular, Electrocardiogram (ECG), blood pressure (BP) and impedance are among the most important biomedical signals processed and analyzed. The majority of studies that utilize these signals attempt to diagnose important irregularities such as arrhythmia or blood loss by processing one of these signals. However, the relationship between them is not yet fully studied using computational methods. Therefore, a system that extract and combine features from all physiological signals representative of states such as arrhythmia and loss of blood volume to predict the presence and the severity of such complications is of paramount importance for care givers. This will not only enhance diagnostic methods, but also enable physicians to make more accurate decisions; thereby the overall quality of care provided to patients will improve significantly. In the first part of the dissertation, analysis and processing of ECG signal to detect the most important waves i.e. P, QRS, and T, are described. A wavelet-based method is implemented to facilitate and enhance the detection process. The method not only provides high detection accuracy, but also efficient in regards to memory and execution time. In addition, the method is robust against noise and baseline drift, as supported by the results. The second part outlines a method that extract features from ECG signal in order to classify and predict the severity of arrhythmia. Arrhythmia can be life-threatening or benign. Several methods exist to detect abnormal heartbeats. However, a clear criterion to identify whether the detected arrhythmia is malignant or benign still an open problem. The method discussed in this dissertation will address a novel solution to this important issue. In the third part, a classification model that predicts the severity of loss of blood volume by incorporating multiple physiological signals is elaborated. The features are extracted in time and frequency domains after transforming the signals with Wavelet Transformation (WT). The results support the desirable reliability and accuracy of the system.

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing
Title Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing PDF eBook
Author Rajesh Kumar Tripathy
Publisher Elsevier
Pages 186
Release 2024-06-17
Genre Computers
ISBN 0443141401

Download Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing Book in PDF, Epub and Kindle

Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals. In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis Covers methodologies as well as experimental results and studies Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications

Signal Processing and Machine Learning for Biomedical Big Data

Signal Processing and Machine Learning for Biomedical Big Data
Title Signal Processing and Machine Learning for Biomedical Big Data PDF eBook
Author Ervin Sejdic
Publisher CRC Press
Pages 624
Release 2018-07-04
Genre Medical
ISBN 149877346X

Download Signal Processing and Machine Learning for Biomedical Big Data Book in PDF, Epub and Kindle

Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.

Artificial Intelligence Enabled Signal Processing based Models for Neural Information Processing

Artificial Intelligence Enabled Signal Processing based Models for Neural Information Processing
Title Artificial Intelligence Enabled Signal Processing based Models for Neural Information Processing PDF eBook
Author Rajesh Kumar Tripathy
Publisher CRC Press
Pages 227
Release 2024-06-06
Genre Technology & Engineering
ISBN 1040028772

Download Artificial Intelligence Enabled Signal Processing based Models for Neural Information Processing Book in PDF, Epub and Kindle

The book provides details regarding the application of various signal processing and artificial intelligence-based methods for electroencephalography data analysis. It will help readers in understanding the use of electroencephalography signals for different neural information processing and cognitive neuroscience applications. The book: Covers topics related to the application of signal processing and machine learning-based techniques for the analysis and classification of electroencephalography signals Presents automated methods for detection of neurological disorders and other applications such as cognitive task recognition, and brain-computer interface Highlights the latest machine learning and deep learning methods for neural signal processing Discusses mathematical details for the signal processing and machine learning algorithms applied for electroencephalography data analysis Showcases the detection of dementia from electroencephalography signals using signal processing and machine learning-based techniques It is primarily written for senior undergraduates, graduate students, and researchers in the fields of electrical engineering, electronics and communications engineering, and biomedical engineering.

Machine Learning Methods for Pain Investigation Using Physiological Signals

Machine Learning Methods for Pain Investigation Using Physiological Signals
Title Machine Learning Methods for Pain Investigation Using Physiological Signals PDF eBook
Author Philip Johannes Gouverneur
Publisher Logos Verlag Berlin GmbH
Pages 228
Release 2024-06-14
Genre Mathematics
ISBN 3832582576

Download Machine Learning Methods for Pain Investigation Using Physiological Signals Book in PDF, Epub and Kindle

Pain assessment has remained largely unchanged for decades and is currently based on self-reporting. Although there are different versions, these self-reports all have significant drawbacks. For example, they are based solely on the individual’s assessment and are therefore influenced by personal experience and highly subjective, leading to uncertainty in ratings and difficulty in comparability. Thus, medicine could benefit from an automated, continuous and objective measure of pain. One solution is to use automated pain recognition in the form of machine learning. The aim is to train learning algorithms on sensory data so that they can later provide a pain rating. This thesis summarises several approaches to improve the current state of pain recognition systems based on physiological sensor data. First, a novel pain database is introduced that evaluates the use of subjective and objective pain labels in addition to wearable sensor data for the given task. Furthermore, different feature engineering and feature learning approaches are compared using a fair framework to identify the best methods. Finally, different techniques to increase the interpretability of the models are presented. The results show that classical hand-crafted features can compete with and outperform deep neural networks. Furthermore, the underlying features are easily retrieved from electrodermal activity for automated pain recognition, where pain is often associated with an increase in skin conductance.

EEG SIGNAL PROCESSING: A Machine Learning Based Framework

EEG SIGNAL PROCESSING: A Machine Learning Based Framework
Title EEG SIGNAL PROCESSING: A Machine Learning Based Framework PDF eBook
Author R. John Martin
Publisher Ashok Yakkaldevi
Pages 139
Release 2022-01-31
Genre Art
ISBN 1678180068

Download EEG SIGNAL PROCESSING: A Machine Learning Based Framework Book in PDF, Epub and Kindle

1.1 Motivation Analysis of non-stationary and non-linear nature of signal data is the prime talk in signal processing domain today. On employing biomedical equipments huge volume of physiological data is acquired for analysis and diagnostic purposes. Inferring certain decisions from these signals by manual observation is quite tedious due to artefacts and its time series nature. As large volume of data involved in biomedical signal processing, adopting suitable computational methods is important for analysis. Data Science provides space for processing these signals through machine learning approaches. Many more biomedical signal processing implementations are in place using machine learning methods. This is the inspiration in adopting machine learning approach for analysing EEG signal data for epileptic seizure detection.

Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning

Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning
Title Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning PDF eBook
Author Saeed Mian Qaisar
Publisher Springer Nature
Pages 385
Release 2023-03-01
Genre Computers
ISBN 3031232399

Download Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning Book in PDF, Epub and Kindle

This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.