Process Modelling and Simulation with Finite Element Methods

Process Modelling and Simulation with Finite Element Methods
Title Process Modelling and Simulation with Finite Element Methods PDF eBook
Author William B. J. Zimmerman
Publisher World Scientific
Pages 404
Release 2004
Genre Mathematics
ISBN 9789812387936

Download Process Modelling and Simulation with Finite Element Methods Book in PDF, Epub and Kindle

This book presents a systematic description and case studies of chemical engineering modelling and simulation based on the MATLAB/FEMLAB tools, in support of selected topics in undergraduate and postgraduate programmes that require numerical solution of complex balance equations (ordinary differential equations, partial differential equations, nonlinear equations, integro-differential equations). These systems arise naturally in analysis of transport phenomena, process systems, chemical reactions and chemical thermodynamics, and particle rate processes. Templates are given for modelling both state-of-the-art research topics (e.g. microfluidic networks, film drying, multiphase flow, population balance equations) and case studies of commonplace design calculations -- mixed phase reactor design, heat transfer, flowsheet analysis of unit operations, flash distillations, etc. The great strength of this book is that it makes modelling and simulating in the MATLAB/FEMLAB environment approachable to both the novice and the expert modeller.

Multiphysics Modeling With Finite Element Methods

Multiphysics Modeling With Finite Element Methods
Title Multiphysics Modeling With Finite Element Methods PDF eBook
Author William B J Zimmerman
Publisher World Scientific Publishing Company
Pages 434
Release 2006-10-25
Genre Technology & Engineering
ISBN 9813106735

Download Multiphysics Modeling With Finite Element Methods Book in PDF, Epub and Kindle

Finite element methods for approximating partial differential equations that arise in science and engineering analysis find widespread application. Numerical analysis tools make the solutions of coupled physics, mechanics, chemistry, and even biology accessible to the novice modeler. Nevertheless, modelers must be aware of the limitations and difficulties in developing numerical models that faithfully represent the system they are modeling.This textbook introduces the intellectual framework for modeling with Comsol Multiphysics, a package which has unique features in representing multiply linked domains with complex geometry, highly coupled and nonlinear equation systems, and arbitrarily complicated boundary, auxiliary, and initial conditions. But with this modeling power comes great opportunities and great perils.Progressively, in the first part of the book the novice modeler develops an understanding of how to build up complicated models piecemeal and test them modularly. The second part of the book introduces advanced analysis techniques. The final part of the book deals with case studies in a broad range of application areas including nonlinear pattern formation, thin film dynamics and heterogeneous catalysis, composite and effective media for heat, mass, conductivity, and dispersion, population balances, tomography, multiphase flow, electrokinetic, microfluidic networks, plasma dynamics, and corrosion chemistry.As a revision of Process Modeling and Simulation with Finite Element Methods, this book uses the very latest features of Comsol Multiphysics. There are new case studies on multiphase flow with phase change, plasma dynamics, electromagnetohydrodynamics, microfluidic mixing, and corrosion. In addition, major improvements to the level set method for multiphase flow to ensure phase conservation is introduced.

Practical Finite Element Analysis

Practical Finite Element Analysis
Title Practical Finite Element Analysis PDF eBook
Author Nitin S. Gokhale
Publisher FINITE TO INFINITE
Pages 27
Release 2008
Genre Engineering
ISBN 8190619500

Download Practical Finite Element Analysis Book in PDF, Epub and Kindle

Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.

The Finite Element Method for Electromagnetic Modeling

The Finite Element Method for Electromagnetic Modeling
Title The Finite Element Method for Electromagnetic Modeling PDF eBook
Author Gérard Meunier
Publisher John Wiley & Sons
Pages 618
Release 2010-01-05
Genre Science
ISBN 0470393807

Download The Finite Element Method for Electromagnetic Modeling Book in PDF, Epub and Kindle

Written by specialists of modeling in electromagnetism, this book provides a comprehensive review of the finite element method for low frequency applications. Fundamentals of the method as well as new advances in the field are described in detail. Chapters 1 to 4 present general 2D and 3D static and dynamic formulations by the use of scalar and vector unknowns and adapted interpolations for the fields (nodal, edge, face or volume). Chapter 5 is dedicated to the presentation of different macroscopic behavior laws of materials and their implementation in a finite element context: anisotropy and hysteretic properties for magnetic sheets, iron losses, non-linear permanent magnets and superconductors. More specific formulations are then proposed: the modeling of thin regions when finite elements become misfit (Chapter 6), infinite domains by using geometrical transformations (Chapter 7), the coupling of 2D and 3D formulations with circuit equations (Chapter 8), taking into account the movement, particularly in the presence of Eddy currents (Chapter 9) and an original approach for the treatment of geometrical symmetries when the sources are not symmetric (Chapter 10). Chapters 11 to 13 are devoted to coupled problems: magneto-thermal coupling for induction heating, magneto-mechanical coupling by introducing the notion of strong and weak coupling and magneto-hydrodynamical coupling focusing on electromagnetic instabilities in fluid conductors. Chapter 14 presents different meshing methods in the context of electromagnetism (presence of air) and introduces self-adaptive mesh refinement procedures. Optimization techniques are then covered in Chapter 15, with the adaptation of deterministic and probabilistic methods to the numerical finite element environment. Chapter 16 presents a variational approach of electromagnetism, showing how Maxwell equations are derived from thermodynamic principles.

Modelling and Simulation of Sheet Metal Forming Processes

Modelling and Simulation of Sheet Metal Forming Processes
Title Modelling and Simulation of Sheet Metal Forming Processes PDF eBook
Author Marta C. Oliveira
Publisher MDPI
Pages 254
Release 2020-04-22
Genre Technology & Engineering
ISBN 3039285564

Download Modelling and Simulation of Sheet Metal Forming Processes Book in PDF, Epub and Kindle

The numerical simulation of sheet metal forming processes has become an indispensable tool for the design of components and their forming processes. This role was attained due to the huge impact in reducing time to market and the cost of developing new components in industries ranging from automotive to packing, as well as enabling an improved understanding of the deformation mechanisms and their interaction with process parameters. Despite being a consolidated tool, its potential for application continues to be discovered with the continuous need to simulate more complex processes, including the integration of the various processes involved in the production of a sheet metal component and the analysis of in-service behavior. The quest for more robust and sustainable processes has also changed its deterministic character into stochastic to be able to consider the scatter in mechanical properties induced by previous manufacturing processes. Faced with these challenges, this Special Issue presents scientific advances in the development of numerical tools that improve the prediction results for conventional forming process, enable the development of new forming processes, or contribute to the integration of several manufacturing processes, highlighting the growing multidisciplinary characteristic of this field.

Finite Element Method in Machining Processes

Finite Element Method in Machining Processes
Title Finite Element Method in Machining Processes PDF eBook
Author Angelos P. Markopoulos
Publisher Springer Science & Business Media
Pages 96
Release 2012-08-04
Genre Technology & Engineering
ISBN 1447143302

Download Finite Element Method in Machining Processes Book in PDF, Epub and Kindle

Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations, and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but also for industry professionals.

The Finite Element Method: Solid mechanics

The Finite Element Method: Solid mechanics
Title The Finite Element Method: Solid mechanics PDF eBook
Author O. C. Zienkiewicz
Publisher Butterworth-Heinemann
Pages 482
Release 2000
Genre Continuum mechanics
ISBN 9780750650557

Download The Finite Element Method: Solid mechanics Book in PDF, Epub and Kindle