Proceedings of the International Conference on Mathematical Modeling
Title | Proceedings of the International Conference on Mathematical Modeling PDF eBook |
Author | |
Publisher | |
Pages | 590 |
Release | 1977 |
Genre | Engineering |
ISBN |
Proceedings of the First International Conference on Mathematical Modeling
Title | Proceedings of the First International Conference on Mathematical Modeling PDF eBook |
Author | Xavier J. R. Avula |
Publisher | |
Pages | 561 |
Release | 1977 |
Genre | |
ISBN |
Mathematical Reviews
Title | Mathematical Reviews PDF eBook |
Author | |
Publisher | |
Pages | 1036 |
Release | 1981 |
Genre | Mathematics |
ISBN |
Proceedings of the Conference on Promoting Undergraduate Research in Mathematics
Title | Proceedings of the Conference on Promoting Undergraduate Research in Mathematics PDF eBook |
Author | Joseph A. Gallian |
Publisher | |
Pages | 455 |
Release | 2007 |
Genre | Mathematics |
ISBN | 9780821843215 |
Descriptions of summer research programs: The AIM REU: Individual projects with a common theme by D. W. Farmer The Applied Mathematical Sciences Summer Institute by E. T. Camacho and S. A. Wirkus Promoting research and minority participantion via undergraduate research in the mathematical sciences. MTBI/SUMS-Arizona State University by C. Castillo-Chavez, C. Castillo-Garsow, G. Chowell, D. Murillo, and M. Pshaenich Summer mathematics research experience for undergraduates (REU) at Brigham Young University by M. Dorff Introducing undergraduates for underrepresented minorities to mathematical research: The CSU Channel Islands/California Lutheran University REU, 2004-2006 by C. Wyels The REUT and NREUP programs at California State University, Chico by C. M. Gallagher and T. W. Mattman Undergraduate research at Canisius. Geometry and physics on graphs, summer 2006 by S. Prassidis The NSF REU at Central Michigan University by S. Narayan and K. Smith Claremont Colleges REU, 2005-07 by J. Hoste The first summer undergraduate research program at Clayton State University by A. Lanz Clemson REU in computational number theory and combinatorics by N. Calkin and K. James Research with pre-mathematicians by C. R. Johnson Traditional roots, new beginnings: Transitions in undergraduate research in mathematics at ETSU by A. P. Godbole Undergraduate research in mathematics at Grand Valley State University by S. Schlicker The Hope College REU program by T. Pennings The REU experience at Iowa State University by L. Hogben Lafayette College's REU by G. Gordon LSU REU: Graphs, knots, & Dessins in topology, number theory & geometry by N. W. Stoltzfus, R. V. Perlis, and J. W. Hoffman Mount Holyoke College mathematics summer research institute by M. M. Robinson The director's summer program at the NSA by T. White REU in mathematical biology at Penn State Erie, The Behrend College by J. P. Previte, M. A. Rutter, and S. A. Stevens The Rice University Summer Institute of Statistics (RUSIS) by J. Rojo The Rose-Hulman REU in mathematics by K. Bryan The REU program at DIMACS/Rutgers University by B. J. Latka and F. S. Roberts The SUNY Potsdam-Clarkson University REU program by J. Foisy The Trinity University research experiences for undergraduates in mathematics program by S. Chapman Undergraduate research in mathematics at the University of Akron by J. D. Adler The Duluth undergraduate research program 1977-2006 by J. A. Gallian Promoting undergraduate research in mathematics at the University of Nebraska-Lincoln by J. L. Walker, W. Ledder, R. Rebarber, and G. Woodward REU site: Algorithmic combinatorics on words by F. Blanchet-Sadri Promoting undergraduate research by T. Aktosun Research experiences for undergraduates inverse problems for electrical networks by J. A. Morrow Valparaiso experiences in research for undergraduates in mathematics by R. Gillman and Z. Szaniszlo Wabash Summer Institute in Algebra (WSIA) by M. Axtell, J. D. Phillips, and W. Turner THe SMALL program at Williams College by C. E. Silva and F. Morgan Industrial mathematics and statistics research for undergraduates at WPI by A. C. Heinricher and S. L. Weekes Descriptions of summer enrichment programs: Twelve years of summer program for women in mathematics-What works and why? by M. M. Gupta Research experience for undergraduates in numerical analysis and scientific computing: An international program by G. Fairweather and B. M. Moskal Articles: The Long-Term Undergraduate Research (LURE) model by S. S. Adams, J. A. Davis, N. Eugene, K. Hoke, S. Narayan, and K. Smith Research with students from underrepresented groups by R. Ashley, A. Ayela-Uwangue, F. Cabrera, C. Callesano, and D. A. Narayan Research classes at Gettysburg College by B. Bajnok Research in industrial projects for students: A unique undergraduate experience by S. Beggs What students say about their REU experience by F. Connolly and J. A. Gallian Diversity issues in undergraduate research by R. Cortez, D. Davenport, H
Measuring Quality
Title | Measuring Quality PDF eBook |
Author | Roswitha Poll |
Publisher | München [Germany] : K.G. Saur |
Pages | 180 |
Release | 1996 |
Genre | Education |
ISBN |
The International Federation of Library Associations and Institutions (IFLA) is the leading international body representing the interests of library and information services and their users. It is the global voice of the information profession. The series IFLA Publications deals with many of the means through which libraries, information centres, and information professionals worldwide can formulate their goals, exert their influence as a group, protect their interests, and find solutions to global problems.
A Mathematical Gift, III
Title | A Mathematical Gift, III PDF eBook |
Author | Koji Shiga |
Publisher | American Mathematical Society |
Pages | 148 |
Release | 2005-07-18 |
Genre | Mathematics |
ISBN | 9780821832844 |
This book brings the beauty and fun of mathematics to the classroom. It offers serious mathematics in a lively, reader-friendly style. Included are exercises and many figures illustrating the main concepts. The first chapter talks about the theory of manifolds. It includes discussion of smoothness, differentiability, and analyticity, the idea of local coordinates and coordinate transformation, and a detailed explanation of the Whitney imbedding theorem (both in weak and in strong form).The second chapter discusses the notion of the area of a figure on the plane and the volume of a solid body in space. It includes the proof of the Bolyai-Gerwien theorem about scissors-congruent polynomials and Dehn's solution of the Third Hilbert Problem. This is the third volume originating from a series of lectures given at Kyoto University (Japan). It is suitable for classroom use for high school mathematics teachers and for undergraduate mathematics courses in the sciences and liberal arts. The first and second volumes are available as Volume 19 and Volume 20 in the AMS series, ""Mathematical World"".
Converging Technologies for Improving Human Performance
Title | Converging Technologies for Improving Human Performance PDF eBook |
Author | Mihail C. Roco |
Publisher | Springer Science & Business Media |
Pages | 477 |
Release | 2013-04-17 |
Genre | Technology & Engineering |
ISBN | 9401703590 |
M. C. Roco and W.S. Bainbridge In the early decades of the 21st century, concentrated efforts can unify science based on the unity of nature, thereby advancing the combination of nanotechnology, biotechnology, information technology, and new technologies based in cognitive science. With proper attention to ethical issues and societal needs, converging in human abilities, societal technologies could achieve a tremendous improvement outcomes, the nation's productivity, and the quality of life. This is a broad, cross cutting, emerging and timely opportunity of interest to individuals, society and humanity in the long term. The phrase "convergent technologies" refers to the synergistic combination of four major "NBIC" (nano-bio-info-cogno) provinces of science and technology, each of which is currently progressing at a rapid rate: (a) nanoscience and nanotechnology; (b) biotechnology and biomedicine, including genetic engineering; (c) information technology, including advanced computing and communications; (d) cognitive science, including cognitive neuroscience. Timely and Broad Opportunity. Convergence of diverse technologies is based on material unity at the nanoscale and on technology integration from that scale.