Proceedings 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Title | Proceedings 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition PDF eBook |
Author | |
Publisher | |
Pages | 0 |
Release | 1994 |
Genre | Computer vision |
ISBN | 9780818658266 |
Proceedings 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Title | Proceedings 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition PDF eBook |
Author | |
Publisher | Institute of Electrical & Electronics Engineers(IEEE) |
Pages | 1040 |
Release | 1994 |
Genre | Computer vision |
ISBN |
Pattern Recognition Technologies and Applications: Recent Advances
Title | Pattern Recognition Technologies and Applications: Recent Advances PDF eBook |
Author | Verma, Brijesh |
Publisher | IGI Global |
Pages | 454 |
Release | 2008-06-30 |
Genre | Computers |
ISBN | 1599048094 |
The nature of handwriting in our society has significantly altered over the ages due to the introduction of new technologies such as computers and the World Wide Web. With increases in the amount of signature verification needs, state of the art internet and paper-based automated recognition methods are necessary. Pattern Recognition Technologies and Applications: Recent Advances provides cutting-edge pattern recognition techniques and applications. Written by world-renowned experts in their field, this easy to understand book is a must have for those seeking explanation in topics such as on- and offline handwriting and speech recognition, signature verification, and gender classification.
Pattern Recognition and Computer Vision
Title | Pattern Recognition and Computer Vision PDF eBook |
Author | Huimin Ma |
Publisher | Springer Nature |
Pages | 634 |
Release | 2021-10-22 |
Genre | Computers |
ISBN | 3030880044 |
The 4-volume set LNCS 13019, 13020, 13021 and 13022 constitutes the refereed proceedings of the 4th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2021, held in Beijing, China, in October-November 2021. The 201 full papers presented were carefully reviewed and selected from 513 submissions. The papers have been organized in the following topical sections: Object Detection, Tracking and Recognition; Computer Vision, Theories and Applications, Multimedia Processing and Analysis; Low-level Vision and Image Processing; Biomedical Image Processing and Analysis; Machine Learning, Neural Network and Deep Learning, and New Advances in Visual Perception and Understanding.
Computer Vision: Three-dimensional Reconstruction Techniques
Title | Computer Vision: Three-dimensional Reconstruction Techniques PDF eBook |
Author | Andrea Fusiello |
Publisher | Springer Nature |
Pages | 348 |
Release | 2024-01-28 |
Genre | Computers |
ISBN | 303134507X |
From facial recognition to self-driving cars, the applications of computer vision are vast and ever-expanding. Geometry plays a fundamental role in this discipline, providing the necessary mathematical framework to understand the underlying principles of how we perceive and interpret visual information in the world around us. This text explores the theories and computational techniques used to determine the geometric properties of solid objects through images. It covers the basic concepts and provides the necessary mathematical background for more advanced studies. The book is divided into clear and concise chapters covering a wide range of topics including image formation, camera models, feature detection and 3D reconstruction. Each chapter includes detailed explanations of the theory as well as practical examples to help the reader understand and apply the concepts presented. The book has been written with the intention of being used as a primary resource for students on university courses in computer vision, particularly final year undergraduate or postgraduate computer science or engineering courses. It is also useful for self-study and for those who, outside the academic field, find themselves applying computer vision to solve practical problems. The aim of the book is to strike a balance between the complexity of the theory and its practical applicability in terms of implementation. Rather than providing a comprehensive overview of the current state of the art, it offers a selection of specific methods with enough detail to enable the reader to implement them.
Gesture Recognition
Title | Gesture Recognition PDF eBook |
Author | Amit Konar |
Publisher | Springer |
Pages | 289 |
Release | 2017-07-04 |
Genre | Technology & Engineering |
ISBN | 3319622129 |
This book presents a thorough analysis of gestural data extracted from raw images and/or range data with an aim to recognize the gestures conveyed by the data. It covers image morphological analysis, type-2 fuzzy logic, neural networks and evolutionary computation for classification of gestural data. The application areas include the recognition of primitive postures in ballet/classical Indian dances, detection of pathological disorders from gestural data of elderly people, controlling motion of cars in gesture-driven gaming and gesture-commanded robot control for people with neuro-motor disability. The book is unique in terms of its content, originality and lucid writing style. Primarily intended for graduate students and researchers in the field of electrical/computer engineering, the book will prove equally useful to computer hobbyists and professionals engaged in building firmware for human-computer interfaces. A prerequisite of high school level mathematics is sufficient to understand most of the chapters in the book. A basic background in image processing, although not mandatory, would be an added advantage for certain sections.
Content-Based Image Classification
Title | Content-Based Image Classification PDF eBook |
Author | Rik Das |
Publisher | CRC Press |
Pages | 197 |
Release | 2020-12-17 |
Genre | Computers |
ISBN | 1000280470 |
Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems. The book offers comprehensive coverage of the most essential topics, including: Image feature extraction with novel handcrafted techniques (traditional feature extraction) Image feature extraction with automated techniques (representation learning with CNNs) Significance of fusion-based approaches in enhancing classification accuracy MATLAB® codes for implementing the techniques Use of the Open Access data mining tool WEKA for multiple tasks The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey. Please visit the author's website for any further guidance at https://www.rikdas.com/