Probability With a View Towards Statistics, Volume I
Title | Probability With a View Towards Statistics, Volume I PDF eBook |
Author | J. Hoffman-Jorgensen |
Publisher | Routledge |
Pages | 630 |
Release | 2017-11-22 |
Genre | Mathematics |
ISBN | 1351421581 |
Volume I of this two-volume text and reference work begins by providing a foundation in measure and integration theory. It then offers a systematic introduction to probability theory, and in particular, those parts that are used in statistics. This volume discusses the law of large numbers for independent and non-independent random variables, transforms, special distributions, convergence in law, the central limit theorem for normal and infinitely divisible laws, conditional expectations and martingales. Unusual topics include the uniqueness and convergence theorem for general transforms with characteristic functions, Laplace transforms, moment transforms and generating functions as special examples. The text contains substantive applications, e.g., epidemic models, the ballot problem, stock market models and water reservoir models, and discussion of the historical background. The exercise sets contain a variety of problems ranging from simple exercises to extensions of the theory.
High-Dimensional Probability
Title | High-Dimensional Probability PDF eBook |
Author | Roman Vershynin |
Publisher | Cambridge University Press |
Pages | 299 |
Release | 2018-09-27 |
Genre | Business & Economics |
ISBN | 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Introduction to Probability
Title | Introduction to Probability PDF eBook |
Author | David F. Anderson |
Publisher | Cambridge University Press |
Pages | 447 |
Release | 2017-11-02 |
Genre | Mathematics |
ISBN | 110824498X |
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Probability with Statistical Applications
Title | Probability with Statistical Applications PDF eBook |
Author | Rinaldo B. Schinazi |
Publisher | Springer Science & Business Media |
Pages | 349 |
Release | 2011-12-15 |
Genre | Mathematics |
ISBN | 081768249X |
This second edition textbook offers a practical introduction to probability for undergraduates at all levels with different backgrounds and views towards applications. Calculus is a prerequisite for understanding the basic concepts, however the book is written with a sensitivity to students’ common difficulties with calculus that does not obscure the thorough treatment of the probability content. The first six chapters of this text neatly and concisely cover the material traditionally required by most undergraduate programs for a first course in probability. The comprehensive text includes a multitude of new examples and exercises, and careful revisions throughout. Particular attention is given to the expansion of the last three chapters of the book with the addition of one entirely new chapter (9) on ’Finding and Comparing Estimators.’ The classroom-tested material presented in this second edition forms the basis for a second course introducing mathematical statistics.
Probability With a View Towards Statistics
Title | Probability With a View Towards Statistics PDF eBook |
Author | J. Hoffman-Jorgensen |
Publisher | CRC Press |
Pages | 636 |
Release | 1994-07-01 |
Genre | Mathematics |
ISBN | 9780412052217 |
Volume I of this two-volume text and reference work begins by providing a foundation in measure and integration theory. It then offers a systematic introduction to probability theory, and in particular, those parts that are used in statistics. This volume discusses the law of large numbers for independent and non-independent random variables, transforms, special distributions, convergence in law, the central limit theorem for normal and infinitely divisible laws, conditional expectations and martingales. Unusual topics include the uniqueness and convergence theorem for general transforms with characteristic functions, Laplace transforms, moment transforms and generating functions as special examples. The text contains substantive applications, e.g., epidemic models, the ballot problem, stock market models and water reservoir models, and discussion of the historical background. The exercise sets contain a variety of problems ranging from simple exercises to extensions of the theory.
Theory of Probability
Title | Theory of Probability PDF eBook |
Author | Bruno De Finetti |
Publisher | John Wiley & Sons |
Pages | 0 |
Release | 1992-06 |
Genre | Probabilities |
ISBN | 9780471588825 |
Probability With a View Towards Statistics, Volume II
Title | Probability With a View Towards Statistics, Volume II PDF eBook |
Author | J. Hoffman-Jorgensen |
Publisher | Routledge |
Pages | 432 |
Release | 2017-11-22 |
Genre | Mathematics |
ISBN | 1351421549 |
Volume II of this two-volume text and reference work concentrates on the applications of probability theory to statistics, e.g., the art of calculating densities of complicated transformations of random vectors, exponential models, consistency of maximum estimators, and asymptotic normality of maximum estimators. It also discusses topics of a pure probabilistic nature, such as stochastic processes, regular conditional probabilities, strong Markov chains, random walks, and optimal stopping strategies in random games. Unusual topics include the transformation theory of densities using Hausdorff measures, the consistency theory using the upper definition function, and the asymptotic normality of maximum estimators using twice stochastic differentiability. With an emphasis on applications to statistics, this is a continuation of the first volume, though it may be used independently of that book. Assuming a knowledge of linear algebra and analysis, as well as a course in modern probability, Volume II looks at statistics from a probabilistic point of view, touching only slightly on the practical computation aspects.