Introduction to Probability
Title | Introduction to Probability PDF eBook |
Author | Narayanaswamy Balakrishnan |
Publisher | John Wiley & Sons |
Pages | 548 |
Release | 2021-11-24 |
Genre | Mathematics |
ISBN | 1118548558 |
INTRODUCTION TO PROBABILITY Discover practical models and real-world applications of multivariate models useful in engineering, business, and related disciplines In Introduction to Probability: Multivariate Models and Applications, a team of distinguished researchers delivers a comprehensive exploration of the concepts, methods, and results in multivariate distributions and models. Intended for use in a second course in probability, the material is largely self-contained, with some knowledge of basic probability theory and univariate distributions as the only prerequisite. This textbook is intended as the sequel to Introduction to Probability: Models and Applications. Each chapter begins with a brief historical account of some of the pioneers in probability who made significant contributions to the field. It goes on to describe and explain a critical concept or method in multivariate models and closes with two collections of exercises designed to test basic and advanced understanding of the theory. A wide range of topics are covered, including joint distributions for two or more random variables, independence of two or more variables, transformations of variables, covariance and correlation, a presentation of the most important multivariate distributions, generating functions and limit theorems. This important text: Includes classroom-tested problems and solutions to probability exercises Highlights real-world exercises designed to make clear the concepts presented Uses Mathematica software to illustrate the text’s computer exercises Features applications representing worldwide situations and processes Offers two types of self-assessment exercises at the end of each chapter, so that students may review the material in that chapter and monitor their progress Perfect for students majoring in statistics, engineering, business, psychology, operations research and mathematics taking a second course in probability, Introduction to Probability: Multivariate Models and Applications is also an indispensable resource for anyone who is required to use multivariate distributions to model the uncertainty associated with random phenomena.
Probability Models and Applications
Title | Probability Models and Applications PDF eBook |
Author | Ingram Olkin |
Publisher | Macmillan College |
Pages | 715 |
Release | 1994-01-01 |
Genre | Mathematics |
ISBN | 9780023892202 |
This text promotes cross-disciplinary research into the modelling of the ever increasing complex data involved in scientific and technological research. It shows where and how to apply probability models to real phenomena and how to prepare the tools necessary for such applications.
Probability Models And Applications (Revised Second Edition)
Title | Probability Models And Applications (Revised Second Edition) PDF eBook |
Author | Ingram Olkin |
Publisher | World Scientific |
Pages | 732 |
Release | 2019-09-03 |
Genre | Mathematics |
ISBN | 9813202068 |
Written by renowned experts in the field, this reissue of a textbook has as its unifying theme the role that probability models have had, and continue to have, in scientific and practical applications. It includes many examples, with actual data, of real-world use of probability models, while expositing the mathematical theory of probability at an introductory calculus-based level. Detailed descriptions of the properties and applications of probability models that have successfully modeled real phenomena are given, as well as an explanation of methods for testing goodness of fit of these models. Readers will receive a firm foundation in techniques for deriving distributions of various summaries of data that will prepare them for subsequent studies of statistics, as well as a solid grounding in concepts such as that of conditional probability that will prepare them for more advanced courses in stochastic processes.
Concepts of Probability Theory
Title | Concepts of Probability Theory PDF eBook |
Author | Paul E. Pfeiffer |
Publisher | Courier Corporation |
Pages | 418 |
Release | 2013-05-13 |
Genre | Mathematics |
ISBN | 0486165663 |
Using the Kolmogorov model, this intermediate-level text discusses random variables, probability distributions, mathematical expectation, random processes, more. For advanced undergraduates students of science, engineering, or math. Includes problems with answers and six appendixes. 1965 edition.
Probability Models for DNA Sequence Evolution
Title | Probability Models for DNA Sequence Evolution PDF eBook |
Author | Rick Durrett |
Publisher | Springer Science & Business Media |
Pages | 246 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475762852 |
"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.
Applied Probability Models with Optimization Applications
Title | Applied Probability Models with Optimization Applications PDF eBook |
Author | Sheldon M. Ross |
Publisher | Courier Corporation |
Pages | 226 |
Release | 2013-04-15 |
Genre | Mathematics |
ISBN | 0486318648 |
Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
Introduction to Probability Models
Title | Introduction to Probability Models PDF eBook |
Author | Sheldon M. Ross |
Publisher | Academic Press |
Pages | 801 |
Release | 2006-12-11 |
Genre | Mathematics |
ISBN | 0123756871 |
Introduction to Probability Models, Tenth Edition, provides an introduction to elementary probability theory and stochastic processes. There are two approaches to the study of probability theory. One is heuristic and nonrigorous, and attempts to develop in students an intuitive feel for the subject that enables him or her to think probabilistically. The other approach attempts a rigorous development of probability by using the tools of measure theory. The first approach is employed in this text. The book begins by introducing basic concepts of probability theory, such as the random variable, conditional probability, and conditional expectation. This is followed by discussions of stochastic processes, including Markov chains and Poison processes. The remaining chapters cover queuing, reliability theory, Brownian motion, and simulation. Many examples are worked out throughout the text, along with exercises to be solved by students. This book will be particularly useful to those interested in learning how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. Ideally, this text would be used in a one-year course in probability models, or a one-semester course in introductory probability theory or a course in elementary stochastic processes. New to this Edition: - 65% new chapter material including coverage of finite capacity queues, insurance risk models and Markov chains - Contains compulsory material for new Exam 3 of the Society of Actuaries containing several sections in the new exams - Updated data, and a list of commonly used notations and equations, a robust ancillary package, including a ISM, SSM, and test bank - Includes SPSS PASW Modeler and SAS JMP software packages which are widely used in the field Hallmark features: - Superior writing style - Excellent exercises and examples covering the wide breadth of coverage of probability topics - Real-world applications in engineering, science, business and economics