Probability in Banach Spaces

Probability in Banach Spaces
Title Probability in Banach Spaces PDF eBook
Author Michel Ledoux
Publisher Springer Science & Business Media
Pages 493
Release 2013-03-09
Genre Mathematics
ISBN 3642202128

Download Probability in Banach Spaces Book in PDF, Epub and Kindle

Isoperimetric, measure concentration and random process techniques appear at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (integrability and limit theorems for vector valued random variables, boundedness and continuity of random processes) and of some of their links to Geometry of Banach spaces (via the type and cotype properties). Its purpose is to present some of the main aspects of this theory, from the foundations to the most important achievements. The main features of the investigation are the systematic use of isoperimetry and concentration of measure and abstract random process techniques (entropy and majorizing measures). Examples of these probabilistic tools and ideas to classical Banach space theory are further developed.

Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference

Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference
Title Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference PDF eBook
Author R.M. Dudley
Publisher Springer Science & Business Media
Pages 512
Release 2012-12-06
Genre Mathematics
ISBN 1461203678

Download Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference Book in PDF, Epub and Kindle

Probability limit theorems in infinite-dimensional spaces give conditions un der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition
Title Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition PDF eBook
Author Alfonso Rocha-Arteaga
Publisher Springer Nature
Pages 140
Release 2019-11-02
Genre Mathematics
ISBN 3030227006

Download Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition Book in PDF, Epub and Kindle

This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,∞, from the class L0 of selfdecomposable distributions to the class L∞ generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.

Probability in Banach Spaces V

Probability in Banach Spaces V
Title Probability in Banach Spaces V PDF eBook
Author Anatole Beck
Publisher Springer
Pages 463
Release 2006-11-14
Genre Mathematics
ISBN 3540396454

Download Probability in Banach Spaces V Book in PDF, Epub and Kindle

Probability Distributions on Banach Spaces

Probability Distributions on Banach Spaces
Title Probability Distributions on Banach Spaces PDF eBook
Author N Vakhania
Publisher Springer Science & Business Media
Pages 507
Release 2012-12-06
Genre Mathematics
ISBN 940093873X

Download Probability Distributions on Banach Spaces Book in PDF, Epub and Kindle

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Lévy Processes and Infinitely Divisible Distributions

Lévy Processes and Infinitely Divisible Distributions
Title Lévy Processes and Infinitely Divisible Distributions PDF eBook
Author Sato Ken-Iti
Publisher Cambridge University Press
Pages 504
Release 1999
Genre Distribution (Probability theory)
ISBN 9780521553025

Download Lévy Processes and Infinitely Divisible Distributions Book in PDF, Epub and Kindle

Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes

Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes
Title Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes PDF eBook
Author Aleksand Janicki
Publisher CRC Press
Pages 376
Release 2021-07-28
Genre Mathematics
ISBN 1000445070

Download Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes Book in PDF, Epub and Kindle

Presents new computer methods in approximation, simulation, and visualization for a host of alpha-stable stochastic processes.