Probability-1

Probability-1
Title Probability-1 PDF eBook
Author Albert N. Shiryaev
Publisher Springer
Pages 501
Release 2016-07-08
Genre Mathematics
ISBN 0387722068

Download Probability-1 Book in PDF, Epub and Kindle

Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.

Probability Sun

Probability Sun
Title Probability Sun PDF eBook
Author Nancy Kress
Publisher Tor Books
Pages 366
Release 2003-02-17
Genre Fiction
ISBN 146682526X

Download Probability Sun Book in PDF, Epub and Kindle

Salvation or Annihilation? A strange artifact has been discovered on a distant planet, an artifact that may be the key to humanity's salvation. For we at war with the Fallers, an alien race bent on nothing short of genocide, and this is a war we are losing. The artifact is not only a powerful weapon, but possibly the rosetta stone to a lost superscience . . . a superscience that the Fallers may have already decoded. Or it may be a doomsday machine that could destroy the very fabric of space. At the Publisher's request, this title is being sold without Digital Rights Management Software (DRM) applied.

Probability and Statistics

Probability and Statistics
Title Probability and Statistics PDF eBook
Author Michael J. Evans
Publisher Macmillan
Pages 704
Release 2004
Genre Mathematics
ISBN 9780716747420

Download Probability and Statistics Book in PDF, Epub and Kindle

Unlike traditional introductory math/stat textbooks, Probability and Statistics: The Science of Uncertainty brings a modern flavor based on incorporating the computer to the course and an integrated approach to inference. From the start the book integrates simulations into its theoretical coverage, and emphasizes the use of computer-powered computation throughout.* Math and science majors with just one year of calculus can use this text and experience a refreshing blend of applications and theory that goes beyond merely mastering the technicalities. They'll get a thorough grounding in probability theory, and go beyond that to the theory of statistical inference and its applications. An integrated approach to inference is presented that includes the frequency approach as well as Bayesian methodology. Bayesian inference is developed as a logical extension of likelihood methods. A separate chapter is devoted to the important topic of model checking and this is applied in the context of the standard applied statistical techniques. Examples of data analyses using real-world data are presented throughout the text. A final chapter introduces a number of the most important stochastic process models using elementary methods. *Note: An appendix in the book contains Minitab code for more involved computations. The code can be used by students as templates for their own calculations. If a software package like Minitab is used with the course then no programming is required by the students.

Probability Theory II

Probability Theory II
Title Probability Theory II PDF eBook
Author M. Loeve
Publisher Springer Science & Business Media
Pages 437
Release 1978-05-15
Genre Mathematics
ISBN 0387902627

Download Probability Theory II Book in PDF, Epub and Kindle

This book is intended as a text for graduate students and as a reference for workers in probability and statistics. The prerequisite is honest calculus. The material covered in Parts Two to Five inclusive requires about three to four semesters of graduate study. The introductory part may serve as a text for an undergraduate course in elementary probability theory. Numerous historical marks about results, methods, and the evolution of various fields are an intrinsic part of the text. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated.

Introduction to Probability

Introduction to Probability
Title Introduction to Probability PDF eBook
Author David F. Anderson
Publisher Cambridge University Press
Pages 447
Release 2017-11-02
Genre Mathematics
ISBN 110824498X

Download Introduction to Probability Book in PDF, Epub and Kindle

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Probability

Probability
Title Probability PDF eBook
Author Albert Shiryaev
Publisher Springer Science & Business Media
Pages 636
Release 2013-11-11
Genre Mathematics
ISBN 1475725396

Download Probability Book in PDF, Epub and Kindle

In the Preface to the first edition, originally published in 1980, we mentioned that this book was based on the author's lectures in the Department of Mechanics and Mathematics of the Lomonosov University in Moscow, which were issued, in part, in mimeographed form under the title "Probabil ity, Statistics, and Stochastic Processors, I, II" and published by that Univer sity. Our original intention in writing the first edition of this book was to divide the contents into three parts: probability, mathematical statistics, and theory of stochastic processes, which corresponds to an outline of a three semester course of lectures for university students of mathematics. However, in the course of preparing the book, it turned out to be impossible to realize this intention completely, since a full exposition would have required too much space. In this connection, we stated in the Preface to the first edition that only probability theory and the theory of random processes with discrete time were really adequately presented. Essentially all of the first edition is reproduced in this second edition. Changes and corrections are, as a rule, editorial, taking into account com ments made by both Russian and foreign readers of the Russian original and ofthe English and Germantranslations [Sll]. The author is grateful to all of these readers for their attention, advice, and helpful criticisms. In this second English edition, new material also has been added, as follows: in Chapter 111, §5, §§7-12; in Chapter IV, §5; in Chapter VII, §§8-10.

Probability and Bayesian Modeling

Probability and Bayesian Modeling
Title Probability and Bayesian Modeling PDF eBook
Author Jim Albert
Publisher CRC Press
Pages 553
Release 2019-12-06
Genre Mathematics
ISBN 1351030132

Download Probability and Bayesian Modeling Book in PDF, Epub and Kindle

Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.