Probabilistic Spiking Neuronal Nets
Title | Probabilistic Spiking Neuronal Nets PDF eBook |
Author | Antonio Galves |
Publisher | Springer Nature |
Pages | 203 |
Release | |
Genre | |
ISBN | 3031684095 |
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence
Title | Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence PDF eBook |
Author | Nikola K. Kasabov |
Publisher | Springer |
Pages | 742 |
Release | 2018-08-29 |
Genre | Technology & Engineering |
ISBN | 3662577151 |
Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
Neural information processing [electronic resource]
Title | Neural information processing [electronic resource] PDF eBook |
Author | Nikil R. Pal |
Publisher | Springer Science & Business Media |
Pages | 1397 |
Release | 2004-11-18 |
Genre | Computers |
ISBN | 3540239316 |
Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.
Spiking Neuron Models
Title | Spiking Neuron Models PDF eBook |
Author | Wulfram Gerstner |
Publisher | Cambridge University Press |
Pages | 498 |
Release | 2002-08-15 |
Genre | Computers |
ISBN | 9780521890793 |
Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.
How to Build a Brain
Title | How to Build a Brain PDF eBook |
Author | Chris Eliasmith |
Publisher | Oxford University Press |
Pages | 475 |
Release | 2013-04-16 |
Genre | Psychology |
ISBN | 0199794693 |
How to Build a Brain provides a detailed exploration of a new cognitive architecture - the Semantic Pointer Architecture - that takes biological detail seriously, while addressing cognitive phenomena. Topics ranging from semantics and syntax, to neural coding and spike-timing-dependent plasticity are integrated to develop the world's largest functional brain model.
Neuronal Dynamics
Title | Neuronal Dynamics PDF eBook |
Author | Wulfram Gerstner |
Publisher | Cambridge University Press |
Pages | 591 |
Release | 2014-07-24 |
Genre | Computers |
ISBN | 1107060834 |
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Probabilistic Models of the Brain
Title | Probabilistic Models of the Brain PDF eBook |
Author | Rajesh P.N. Rao |
Publisher | MIT Press |
Pages | 348 |
Release | 2002-03-29 |
Genre | Medical |
ISBN | 9780262264327 |
A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.