Probabilistic Spiking Neuronal Nets

Probabilistic Spiking Neuronal Nets
Title Probabilistic Spiking Neuronal Nets PDF eBook
Author Antonio Galves
Publisher Springer Nature
Pages 203
Release
Genre
ISBN 3031684095

Download Probabilistic Spiking Neuronal Nets Book in PDF, Epub and Kindle

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence
Title Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence PDF eBook
Author Nikola K. Kasabov
Publisher Springer
Pages 742
Release 2018-08-29
Genre Technology & Engineering
ISBN 3662577151

Download Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence Book in PDF, Epub and Kindle

Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.

Neural information processing [electronic resource]

Neural information processing [electronic resource]
Title Neural information processing [electronic resource] PDF eBook
Author Nikil R. Pal
Publisher Springer Science & Business Media
Pages 1397
Release 2004-11-18
Genre Computers
ISBN 3540239316

Download Neural information processing [electronic resource] Book in PDF, Epub and Kindle

Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.

Spiking Neuron Models

Spiking Neuron Models
Title Spiking Neuron Models PDF eBook
Author Wulfram Gerstner
Publisher Cambridge University Press
Pages 498
Release 2002-08-15
Genre Computers
ISBN 9780521890793

Download Spiking Neuron Models Book in PDF, Epub and Kindle

Neurons in the brain communicate by short electrical pulses, the so-called action potentials or spikes. How can we understand the process of spike generation? How can we understand information transmission by neurons? What happens if thousands of neurons are coupled together in a seemingly random network? How does the network connectivity determine the activity patterns? And, vice versa, how does the spike activity influence the connectivity pattern? These questions are addressed in this 2002 introduction to spiking neurons aimed at those taking courses in computational neuroscience, theoretical biology, biophysics, or neural networks. The approach will suit students of physics, mathematics, or computer science; it will also be useful for biologists who are interested in mathematical modelling. The text is enhanced by many worked examples and illustrations. There are no mathematical prerequisites beyond what the audience would meet as undergraduates: more advanced techniques are introduced in an elementary, concrete fashion when needed.

How to Build a Brain

How to Build a Brain
Title How to Build a Brain PDF eBook
Author Chris Eliasmith
Publisher Oxford University Press
Pages 475
Release 2013-04-16
Genre Psychology
ISBN 0199794693

Download How to Build a Brain Book in PDF, Epub and Kindle

How to Build a Brain provides a detailed exploration of a new cognitive architecture - the Semantic Pointer Architecture - that takes biological detail seriously, while addressing cognitive phenomena. Topics ranging from semantics and syntax, to neural coding and spike-timing-dependent plasticity are integrated to develop the world's largest functional brain model.

Neuronal Dynamics

Neuronal Dynamics
Title Neuronal Dynamics PDF eBook
Author Wulfram Gerstner
Publisher Cambridge University Press
Pages 591
Release 2014-07-24
Genre Computers
ISBN 1107060834

Download Neuronal Dynamics Book in PDF, Epub and Kindle

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Probabilistic Models of the Brain

Probabilistic Models of the Brain
Title Probabilistic Models of the Brain PDF eBook
Author Rajesh P.N. Rao
Publisher MIT Press
Pages 348
Release 2002-03-29
Genre Medical
ISBN 9780262264327

Download Probabilistic Models of the Brain Book in PDF, Epub and Kindle

A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.