Probabilistic Forecasts and Optimal Decisions
Title | Probabilistic Forecasts and Optimal Decisions PDF eBook |
Author | Roman Krzysztofowicz |
Publisher | John Wiley & Sons |
Pages | 581 |
Release | 2025-02-03 |
Genre | Technology & Engineering |
ISBN | 139422186X |
Account for uncertainties and optimize decision-making with this thorough exposition Decision theory is a body of thought and research seeking to apply a mathematical-logical framework to assessing probability and optimizing decision-making. It has developed robust tools for addressing all major challenges to decision making. Yet the number of variables and uncertainties affecting each decision outcome, many of them beyond the decider's control, mean that decision-making is far from a “solved problem”. The tools created by decision theory remain to be refined and applied to decisions in which uncertainties are prominent. Probabilistic Forecasts and Optimal Decisions introduces a theoretically-grounded methodology for optimizing decision-making under conditions of uncertainty. Beginning with an overview of the basic elements of probability theory and methods for modeling continuous variates, it proceeds to survey the mathematics of both continuous and discrete models, supporting each with key examples. The result is a crucial window into the complex but enormously rewarding world of decision theory. Probabilistic Forecasts and Optimal Decisions readers will also find: Extended case studies supported with real-world data Mini-projects running through multiple chapters to illustrate different stages of the decision-making process End of chapter exercises designed to facilitate student learning Probabilistic Forecasts and Optimal Decisions is ideal for advanced undergraduate and graduate students in the sciences and engineering, as well as predictive analytics and decision analytics professionals.
Wind Power Ensemble Forecasting
Title | Wind Power Ensemble Forecasting PDF eBook |
Author | André Gensler |
Publisher | kassel university press GmbH |
Pages | 216 |
Release | 2019-01-16 |
Genre | Weights and measures |
ISBN | 3737606366 |
This thesis describes performance measures and ensemble architectures for deterministic and probabilistic forecasts using the application example of wind power forecasting and proposes a novel scheme for the situation-dependent aggregation of forecasting models. For performance measures, error scores for deterministic as well as probabilistic forecasts are compared, and their characteristics are shown in detail. For the evaluation of deterministic forecasts, a categorization by basic error measure and normalization technique is introduced that simplifies the process of choosing an appropriate error measure for certain forecasting tasks. Furthermore, a scheme for the common evaluation of different forms of probabilistic forecasts is proposed. Based on the analysis of the error scores, a novel hierarchical aggregation technique for both deterministic and probabilistic forecasting models is proposed that dynamically weights individual forecasts using multiple weighting factors such as weather situation and lead time dependent weighting. In the experimental evaluation it is shown that the forecasting quality of the proposed technique is able to outperform other state of the art forecasting models and ensembles.
Statistical Learning Tools for Electricity Load Forecasting
Title | Statistical Learning Tools for Electricity Load Forecasting PDF eBook |
Author | Anestis Antoniadis |
Publisher | Springer Nature |
Pages | 232 |
Release | |
Genre | |
ISBN | 3031603397 |
Probability, Statistics, And Decision Making In The Atmospheric Sciences
Title | Probability, Statistics, And Decision Making In The Atmospheric Sciences PDF eBook |
Author | Allan Murphy |
Publisher | CRC Press |
Pages | 560 |
Release | 2019-07-11 |
Genre | Mathematics |
ISBN | 1000236323 |
Methodology drawn from the fields of probability. statistics and decision making plays an increasingly important role in the atmosphericsciences. both in basic and applied research and in experimental and operational studies. Applications of such methodology can be found in almost every facet of the discipline. from the most theoretical and global (e.g., atmospheric predictability. global climate modeling) to the most practical and local (e.g., crop-weather modeling forecast evaluation). Almost every issue of the multitude of journals published by the atmospheric sciences community now contain some or more papers involving applications of concepts and/or methodology from the fields of probability and statistics. Despite the increasingly pervasive nature of such applications. very few book length treatments of probabilistic and statistical topics of particular interest to atmospheric scientists have appeared (especially inEnglish) since the publication of the pioneering works of Brooks andCarruthers (Handbook of Statistical Methods in Meteorology) in 1953 and Panofsky and Brier-(some Applications of)statistics to Meteor) in 1958. As a result. many relatively recent developments in probability and statistics are not well known to atmospheric scientists and recent work in active areas of meteorological research involving significant applications of probabilistic and statistical methods are not familiar to the meteorological community as a whole.
Seasonal Climate: Forecasting and Managing Risk
Title | Seasonal Climate: Forecasting and Managing Risk PDF eBook |
Author | Alberto Troccoli |
Publisher | Springer Science & Business Media |
Pages | 462 |
Release | 2008-02-22 |
Genre | Science |
ISBN | 1402069901 |
Originally formed around a set of lectures presented at a NATO Advanced Study Institute (ASI), this book has grown to become organised and presented rather more as a textbook than as a standard "collection of proceedings". This therefore is the first unified reference ‘textbook’ in seasonal to interannual climate predictions and their practical uses. Written by some of the world’s leading experts, the book covers a rapidly-developing science of prime social concern.
Intelligent Decision Technologies
Title | Intelligent Decision Technologies PDF eBook |
Author | Rui Neves-Silva |
Publisher | Springer |
Pages | 664 |
Release | 2015-06-09 |
Genre | Technology & Engineering |
ISBN | 3319198572 |
This book presents the 57 papers accepted for presentation at the Seventh KES International Conference on Intelligent Decision Technologies (KES-IDT 2015), held in Sorrento, Italy, in June 2015. The conference consists of keynote talks, oral and poster presentations, invited sessions and workshops on the applications and theory of intelligent decision systems and related areas. The conference provides an opportunity for the presentation and discussion of interesting new research results, promoting knowledge transfer and the generation of new ideas. The book will be of interest to all those whose work involves the development and application of intelligent decision systems.
Handbook of Probabilistic Models
Title | Handbook of Probabilistic Models PDF eBook |
Author | Pijush Samui |
Publisher | Butterworth-Heinemann |
Pages | 592 |
Release | 2019-10-05 |
Genre | Computers |
ISBN | 0128165464 |
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems