Principles Of Quantum Artificial Intelligence: Quantum Problem Solving And Machine Learning (Second Edition)
Title | Principles Of Quantum Artificial Intelligence: Quantum Problem Solving And Machine Learning (Second Edition) PDF eBook |
Author | Andreas Miroslaus Wichert |
Publisher | World Scientific |
Pages | 497 |
Release | 2020-07-08 |
Genre | Computers |
ISBN | 9811224323 |
This unique compendium presents an introduction to problem solving, information theory, statistical machine learning, stochastic methods and quantum computation. It indicates how to apply quantum computation to problem solving, machine learning and quantum-like models to decision making — the core disciplines of artificial intelligence.Most of the chapters were rewritten and extensive new materials were updated. New topics include quantum machine learning, quantum-like Bayesian networks and mind in Everett many-worlds.
Principles of Quantum Artificial Intelligence
Title | Principles of Quantum Artificial Intelligence PDF eBook |
Author | Andreas Wichert |
Publisher | World Scientific Publishing Company |
Pages | 0 |
Release | 2014 |
Genre | Artificial intelligence |
ISBN | 9789814566742 |
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation -- Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.
Principles of Quantum Artificial Intelligence
Title | Principles of Quantum Artificial Intelligence PDF eBook |
Author | Andreas Wichert |
Publisher | |
Pages | 498 |
Release | 2020-07 |
Genre | Computers |
ISBN | 9789811224300 |
Principles Of Quantum Artificial Intelligence
Title | Principles Of Quantum Artificial Intelligence PDF eBook |
Author | Andreas Miroslaus Wichert |
Publisher | World Scientific |
Pages | 277 |
Release | 2013-10-23 |
Genre | Computers |
ISBN | 9814566764 |
In this book, we introduce quantum computation and its application to AI. We highlight problem solving and knowledge representation framework. Based on information theory, we cover two main principles of quantum computation — Quantum Fourier transform and Grover search. Then, we indicate how these two principles can be applied to problem solving and finally present a general model of a quantum computer that is based on production systems.
Supervised Learning with Quantum Computers
Title | Supervised Learning with Quantum Computers PDF eBook |
Author | Maria Schuld |
Publisher | Springer |
Pages | 293 |
Release | 2018-08-30 |
Genre | Science |
ISBN | 3319964240 |
Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.
Machine Learning with Quantum Computers
Title | Machine Learning with Quantum Computers PDF eBook |
Author | Maria Schuld |
Publisher | Springer Nature |
Pages | 321 |
Release | 2021-10-17 |
Genre | Science |
ISBN | 3030830985 |
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
Machine Learning For Dummies
Title | Machine Learning For Dummies PDF eBook |
Author | John Paul Mueller |
Publisher | John Wiley & Sons |
Pages | 471 |
Release | 2021-02-09 |
Genre | Computers |
ISBN | 1119724015 |
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.