Principles of Nonparametric Learning
Title | Principles of Nonparametric Learning PDF eBook |
Author | Laszlo Györfi |
Publisher | Springer |
Pages | 344 |
Release | 2014-05-04 |
Genre | Technology & Engineering |
ISBN | 3709125685 |
This volume provides a systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation, and genetic programming.
Principles of Nonparametric Learning
Title | Principles of Nonparametric Learning PDF eBook |
Author | László Györfi |
Publisher | CISM International Centre for Mechanical Sciences |
Pages | 354 |
Release | 2002-07-30 |
Genre | Computers |
ISBN |
This volume provides a systematic in-depth analysis of nonparametric learning. It covers the theoretical limits and the asymptotical optimal algorithms and estimates, such as pattern recognition, nonparametric regression estimation, universal prediction, vector quantization, distribution and density estimation, and genetic programming.
Bayesian Nonparametrics
Title | Bayesian Nonparametrics PDF eBook |
Author | Nils Lid Hjort |
Publisher | Cambridge University Press |
Pages | 309 |
Release | 2010-04-12 |
Genre | Mathematics |
ISBN | 1139484605 |
Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.
Nonparametric and Semiparametric Models
Title | Nonparametric and Semiparametric Models PDF eBook |
Author | Wolfgang Karl Härdle |
Publisher | Springer Science & Business Media |
Pages | 317 |
Release | 2012-08-27 |
Genre | Mathematics |
ISBN | 364217146X |
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Statistics for Health Care Professionals
Title | Statistics for Health Care Professionals PDF eBook |
Author | Ian Scott |
Publisher | SAGE |
Pages | 249 |
Release | 2005-01-13 |
Genre | Medical |
ISBN | 1848600658 |
Statistics for Health Care Professionals is an accessible guide to understanding statistics within health care practice. Focusing on quantitative approaches to investigating problems, the book introduces the basic rules and principles of statistics. Challenging the notion that statistics are often incomprehensible and complex to use, the authors begin by presenting a `how to' section explaining how specific statistical tests can be performed. They also help readers to understand the language of statistics, which is often a stumbling block for those coming to the subject for the first time. The reader is taught how to calculate statistics by hand as well as being introduced to computer packages to make life easier, and then how to analyse these results. As the results of health care research are so integral to decision-making and developing new practice within the profession, the book encourages the reader to think critically about data analysis and research design, and how these can impact upon evidence based practice. This critical stance is also crucial in the assessment of the many reports and documents issued within the health industry. Statistics for Health Care Professionals includes practical examples of statistical techniques throughout, and the exercises within and at the end of each chapter help readers to learn and to develop proficiency. There is also a glossary at the end of the book for quick and easy referencing. This book is essential reading for those coming to statistics for the first time within a health care setting.
Bayesian Nonparametrics
Title | Bayesian Nonparametrics PDF eBook |
Author | J.K. Ghosh |
Publisher | Springer Science & Business Media |
Pages | 311 |
Release | 2006-05-11 |
Genre | Mathematics |
ISBN | 0387226540 |
This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.
Fundamentals of Nonparametric Bayesian Inference
Title | Fundamentals of Nonparametric Bayesian Inference PDF eBook |
Author | Subhashis Ghosal |
Publisher | Cambridge University Press |
Pages | 671 |
Release | 2017-06-26 |
Genre | Business & Economics |
ISBN | 0521878268 |
Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.