Principles of Algebraic Geometry

Principles of Algebraic Geometry
Title Principles of Algebraic Geometry PDF eBook
Author Phillip Griffiths
Publisher John Wiley & Sons
Pages 837
Release 2014-08-21
Genre Mathematics
ISBN 111862632X

Download Principles of Algebraic Geometry Book in PDF, Epub and Kindle

A comprehensive, self-contained treatment presenting general results of the theory. Establishes a geometric intuition and a working facility with specific geometric practices. Emphasizes applications through the study of interesting examples and the development of computational tools. Coverage ranges from analytic to geometric. Treats basic techniques and results of complex manifold theory, focusing on results applicable to projective varieties, and includes discussion of the theory of Riemann surfaces and algebraic curves, algebraic surfaces and the quadric line complex as well as special topics in complex manifolds.

代数几何原理

代数几何原理
Title 代数几何原理 PDF eBook
Author Phillip Griffiths
Publisher
Pages 813
Release 2007
Genre Geometry, Algebraic
ISBN 9787506282772

Download 代数几何原理 Book in PDF, Epub and Kindle

本书内容包括:基础知识;复代数簇;Riemann曲面和代数曲线;深入技巧;曲面;留数(残数)等。

Complex Geometry

Complex Geometry
Title Complex Geometry PDF eBook
Author Daniel Huybrechts
Publisher Springer Science & Business Media
Pages 336
Release 2005
Genre Computers
ISBN 9783540212904

Download Complex Geometry Book in PDF, Epub and Kindle

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

An Invitation to Algebraic Geometry

An Invitation to Algebraic Geometry
Title An Invitation to Algebraic Geometry PDF eBook
Author Karen E. Smith
Publisher Springer Science & Business Media
Pages 173
Release 2013-03-09
Genre Mathematics
ISBN 1475744978

Download An Invitation to Algebraic Geometry Book in PDF, Epub and Kindle

This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.

Algebraic Geometry

Algebraic Geometry
Title Algebraic Geometry PDF eBook
Author Robin Hartshorne
Publisher Springer Science & Business Media
Pages 511
Release 2013-06-29
Genre Mathematics
ISBN 1475738498

Download Algebraic Geometry Book in PDF, Epub and Kindle

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Algebraic Geometry and Commutative Algebra

Algebraic Geometry and Commutative Algebra
Title Algebraic Geometry and Commutative Algebra PDF eBook
Author Siegfried Bosch
Publisher Springer Nature
Pages 504
Release 2022-04-22
Genre Mathematics
ISBN 1447175239

Download Algebraic Geometry and Commutative Algebra Book in PDF, Epub and Kindle

Algebraic Geometry is a fascinating branch of Mathematics that combines methods from both Algebra and Geometry. It transcends the limited scope of pure Algebra by means of geometric construction principles. Putting forward this idea, Grothendieck revolutionized Algebraic Geometry in the late 1950s by inventing schemes. Schemes now also play an important role in Algebraic Number Theory, a field that used to be far away from Geometry. The new point of view paved the way for spectacular progress, such as the proof of Fermat's Last Theorem by Wiles and Taylor. This book explains the scheme-theoretic approach to Algebraic Geometry for non-experts, while more advanced readers can use it to broaden their view on the subject. A separate part presents the necessary prerequisites from Commutative Algebra, thereby providing an accessible and self-contained introduction to advanced Algebraic Geometry. Every chapter of the book is preceded by a motivating introduction with an informal discussion of its contents and background. Typical examples, and an abundance of exercises illustrate each section. Therefore the book is an excellent companion for self-studying or for complementing skills that have already been acquired. It can just as well serve as a convenient source for (reading) course material and, in any case, as supplementary literature. The present edition is a critical revision of the earlier text.

Classical Algebraic Geometry

Classical Algebraic Geometry
Title Classical Algebraic Geometry PDF eBook
Author Igor V. Dolgachev
Publisher Cambridge University Press
Pages 653
Release 2012-08-16
Genre Mathematics
ISBN 1139560786

Download Classical Algebraic Geometry Book in PDF, Epub and Kindle

Algebraic geometry has benefited enormously from the powerful general machinery developed in the latter half of the twentieth century. The cost has been that much of the research of previous generations is in a language unintelligible to modern workers, in particular, the rich legacy of classical algebraic geometry, such as plane algebraic curves of low degree, special algebraic surfaces, theta functions, Cremona transformations, the theory of apolarity and the geometry of lines in projective spaces. The author's contemporary approach makes this legacy accessible to modern algebraic geometers and to others who are interested in applying classical results. The vast bibliography of over 600 references is complemented by an array of exercises that extend or exemplify results given in the book.