Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods
Title Primal-dual Interior-Point Methods PDF eBook
Author Stephen J. Wright
Publisher SIAM
Pages 309
Release 1997-01-01
Genre Interior-point methods
ISBN 9781611971453

Download Primal-dual Interior-Point Methods Book in PDF, Epub and Kindle

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Primal-Dual Interior-Point Methods

Primal-Dual Interior-Point Methods
Title Primal-Dual Interior-Point Methods PDF eBook
Author Stephen J. Wright
Publisher SIAM
Pages 293
Release 1997-01-01
Genre Technology & Engineering
ISBN 089871382X

Download Primal-Dual Interior-Point Methods Book in PDF, Epub and Kindle

Presents the major primal-dual algorithms for linear programming. A thorough, straightforward description of the theoretical properties of these methods.

A Mathematical View of Interior-point Methods in Convex Optimization

A Mathematical View of Interior-point Methods in Convex Optimization
Title A Mathematical View of Interior-point Methods in Convex Optimization PDF eBook
Author James Renegar
Publisher SIAM
Pages 124
Release 2001-01-01
Genre Mathematics
ISBN 9780898718812

Download A Mathematical View of Interior-point Methods in Convex Optimization Book in PDF, Epub and Kindle

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Progress in Mathematical Programming

Progress in Mathematical Programming
Title Progress in Mathematical Programming PDF eBook
Author Nimrod Megiddo
Publisher Springer Science & Business Media
Pages 164
Release 2012-12-06
Genre Mathematics
ISBN 1461396174

Download Progress in Mathematical Programming Book in PDF, Epub and Kindle

The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms."

Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization
Title Interior Point Methods for Linear Optimization PDF eBook
Author Cornelis Roos
Publisher Springer Science & Business Media
Pages 501
Release 2006-02-08
Genre Mathematics
ISBN 0387263799

Download Interior Point Methods for Linear Optimization Book in PDF, Epub and Kindle

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming
Title Interior-point Polynomial Algorithms in Convex Programming PDF eBook
Author Yurii Nesterov
Publisher SIAM
Pages 414
Release 1994-01-01
Genre Mathematics
ISBN 9781611970791

Download Interior-point Polynomial Algorithms in Convex Programming Book in PDF, Epub and Kindle

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.

Self-Regularity

Self-Regularity
Title Self-Regularity PDF eBook
Author Jiming Peng
Publisher Princeton University Press
Pages 201
Release 2009-01-10
Genre Mathematics
ISBN 140082513X

Download Self-Regularity Book in PDF, Epub and Kindle

Research on interior-point methods (IPMs) has dominated the field of mathematical programming for the last two decades. Two contrasting approaches in the analysis and implementation of IPMs are the so-called small-update and large-update methods, although, until now, there has been a notorious gap between the theory and practical performance of these two strategies. This book comes close to bridging that gap, presenting a new framework for the theory of primal-dual IPMs based on the notion of the self-regularity of a function. The authors deal with linear optimization, nonlinear complementarity problems, semidefinite optimization, and second-order conic optimization problems. The framework also covers large classes of linear complementarity problems and convex optimization. The algorithm considered can be interpreted as a path-following method or a potential reduction method. Starting from a primal-dual strictly feasible point, the algorithm chooses a search direction defined by some Newton-type system derived from the self-regular proximity. The iterate is then updated, with the iterates staying in a certain neighborhood of the central path until an approximate solution to the problem is found. By extensively exploring some intriguing properties of self-regular functions, the authors establish that the complexity of large-update IPMs can come arbitrarily close to the best known iteration bounds of IPMs. Researchers and postgraduate students in all areas of linear and nonlinear optimization will find this book an important and invaluable aid to their work.