Preignition Chemical Reactions Leading to Autoignition and Knock in Spark-ignition Engines

Preignition Chemical Reactions Leading to Autoignition and Knock in Spark-ignition Engines
Title Preignition Chemical Reactions Leading to Autoignition and Knock in Spark-ignition Engines PDF eBook
Author Sumanth Addagarla
Publisher
Pages 562
Release 1991
Genre
ISBN

Download Preignition Chemical Reactions Leading to Autoignition and Knock in Spark-ignition Engines Book in PDF, Epub and Kindle

Relation Between Spark-ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-speed Photography

Relation Between Spark-ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-speed Photography
Title Relation Between Spark-ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-speed Photography PDF eBook
Author Cearcy D. Miller
Publisher
Pages 72
Release 1946
Genre Combustion
ISBN

Download Relation Between Spark-ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-speed Photography Book in PDF, Epub and Kindle

A critical review of literature bearing on the autoignition and detonation-wave theories of spark-ignition engine knock and on the nature of gas vibrations associated with combustion and knock results in the conclusion that neither the autoignition theory nor the detonation-wave theory is an adequate explanation of spark-ignition engine knock. A knock theory is proposed, combining the autoignition and detonation-wave theories, introducing the idea that the detonation wave develops in autoignited or afterburning gases, and ascribing comparatively low-pitched heavy knocks to autoignition but high-pitched pinging knocks to detonation waves with the possibility of combinations of the two types of knock.

Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

Researches on Preliminary Chemical Reactions in Spark-Ignition Engines
Title Researches on Preliminary Chemical Reactions in Spark-Ignition Engines PDF eBook
Author E. Muehlner
Publisher BiblioGov
Pages 60
Release 2013-07
Genre
ISBN 9781289263515

Download Researches on Preliminary Chemical Reactions in Spark-Ignition Engines Book in PDF, Epub and Kindle

Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

Researches on Preliminary Chemical Reactions in Spark-ignition Engines

Researches on Preliminary Chemical Reactions in Spark-ignition Engines
Title Researches on Preliminary Chemical Reactions in Spark-ignition Engines PDF eBook
Author E. Mühlner
Publisher
Pages 43
Release 1943
Genre Spark ignition engines
ISBN

Download Researches on Preliminary Chemical Reactions in Spark-ignition Engines Book in PDF, Epub and Kindle

Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "preliminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

Chemical Kinetic Modelling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines

Chemical Kinetic Modelling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines
Title Chemical Kinetic Modelling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines PDF eBook
Author Hakan Serhad Soyhan
Publisher
Pages
Release 2000
Genre
ISBN

Download Chemical Kinetic Modelling of Autoignition Under Conditions Relevant to Knock in Spark Ignition Engines Book in PDF, Epub and Kindle

The phenomenon called the ''engine knock'' is an abnonnal combustion mode inspark ignition (SI) engines. it might lead to very high peak pressure in the cylinderand serious damages in engines. Knock limits the compression ratio of the ~ngine. The higher compression ratiomeans the higher fuel conversion efficiency of the engine. it also means highercylinder pressure and thereby higher gas temperature which can cause knock becauseof shorter ignition delay time. Increasing compression ratio is the simplest strategyfor increasing the efficiency of combustion, so a more detailed understanding of theprocesses goveming knock is important.it is generally accepted that knock is initiated by autoignition in the unbumed gasmixture as a result of compression due to the f1ame front propagation and the piston movement. Auto ignition can be defined as spontaneous ignition of some part of thecharge in the cylinder. The autoignition is may cause an extremely rapid chemicalenergy release. it causes a high local pressure and propagation of pressure waveswith high amplitude across the combustion chamber. The rapid rise in pressure andthe vibration of the resultant pressure wave across the combustion chamber cause erosion of the piston, piston rings and head gaskets. Known measures to avoid theoccurrence of engine knock cause either environmental problems, for example theusage of MTBE or reduce the engine thennal efficiency , for example lowcompression ratio, high swirl or early ignition timing. Because of this, the occurrenceof knock was subject of continuous public and industrial research.A detailed investigation of the combustion processes in intemal combustion engines is necessary for the improvement of engine technology .Chemical kinetic model ofthe combustion process implemented into the computational f1uid dynamic sapplications for the prediction of gas f1ow in the combustion chamber provides anefficient tool in tenns of time and cost for the investigation and improvement of the combustion process.The software tools for the modeling of combustion processes in combustion devicesrequire the reduction of the kinetic model to a limited number of species. Since the engine geometry is very complex, the performnnance of commercial software productsfor combustion device optimization decreases considerably if the number of species exceeds about 10. Consequently, a variety of methods in chemical kinetic modelingare needed to construct a reaction mechanism for a complex fuel such as PRF and toreduce it to a low number of capable species without a loss of information that mightbe important for the accuracy of the calculations. One method having the following steps is The generation of a ''detailed reaction mechanism'',The construction of the ''skeletal mechanism'',The final reduction of the reaction mechanism using Quasi Steady State Approximations (QSSA).This study concentrates on the construction of the problem oriented reduced mechanism. A method for automatic reduction of detailed kinetic to reduced mechanisms for complex fuels is proposed. The method is based on the simultaneoususe of sensitivity, reaction-f1ow and lifetime analyses. The sensitivity analysis detects species that the overall combustion process is sensitive on. Small in accuracies, in calculating these species, result in large errors in the characteristic behavior of the chernical scheme. Species, not relevant for the occurrence of autoignition in the end-gas, are defined as redundant. The automatic detection of there dundant species is done by means of an analysis of the reaction f1ows from and towards the most sensitive species, the fuel, the oxidizer and the final products. Theyare identified and eliminated for different pre-set levels of minimum reaction flow and sensitivity to generate a skeletal mechanism. The resulting skeletal mechanism is investigated with lifetime analysis to get the final reduced mechanism. A measure ofspecies lifetimes is taken from the diagonal elements of the Jacobian matrix of the chernical source terms. The species with the lifetime shorter than and mass-fractionIess than specified limits are assumed to be in steady state and selected for removalfrom the skeletal mechanism. The reduced mechanism is valid for the parameter range of initial and boundary values that the analysis has been performed for.The proposed reduction method is exemplified on a detailed reaction mechanism foriso-octane/n-heptane rnixtures. The gas-phase chernistry is analyzed in the end gas of an SI engine, using a two-zone model with conditions chosen relevant for engine knock. Comparing results obtained from the skeletal and the reduced mechanism swith results from the detailed mechanism shows the accuracy of the resulting mechanisms. it is shown that the error in the mechanisms increase with increasingpre-set Ievels of reduction. This is visualized by the help of the predicted crank angle degree at which auto ignition in the end gas of the engine occurs.The reduced mechanism is used for investigation of the modeling of the auto ignitionin the SI engines. The effects of engine operator parameters such as compression ratio, spark advance, fuel equivalence ratio and engine speed on autoignition onsettime have been studied.This work shows that it is possible to achieve a simplified reaction mechanism withgood agreement to the original mechanism by the reduction method. Fundamental knowledge about the detailed mechanism is not necessary to apply the method. Theprocedure used for reduction is fully automatic and provides a fast technique togenerate the problem oriented reduced mechanisms.

Autoignition Chemistry in a Motored Engine

Autoignition Chemistry in a Motored Engine
Title Autoignition Chemistry in a Motored Engine PDF eBook
Author
Publisher
Pages 23
Release 1996
Genre
ISBN

Download Autoignition Chemistry in a Motored Engine Book in PDF, Epub and Kindle

Autoignition of isomers of pentane, hexane, and primary reference fuel mixture of n-heptane and iso-octane has been studied experimentally under motored engine conditions and computationally using a detailed chemical kinetic reaction mechanism. Computed and experimental results are compared and used to help understand the chemical factors leading to engine knock in spark-ignited engines. The kinetic model reproduces observed variations in critical compression ratio with fuel molecular size and structure, provides intermediate product species concentrations in good agreement with observations, and gives insights into the kinetic origins of fuel octane sensitivity. Sequential computed engine cycles were found to lead to stable, non-igniting behavior for conditions below a critical compression ratio; to unstable, oscillating but nonigniting behavior in a transition region; and eventually to ignition as the compression ratio is steadily increased. This transition is related to conditions where a negative temperature coefficient of reaction exists, which has a significant influence on octane number and fuel octane sensitivity.

Knocking in Gasoline Engines

Knocking in Gasoline Engines
Title Knocking in Gasoline Engines PDF eBook
Author Michael Günther
Publisher Springer
Pages 381
Release 2017-11-21
Genre Technology & Engineering
ISBN 3319697609

Download Knocking in Gasoline Engines Book in PDF, Epub and Kindle

The book includes the papers presented at the conference discussing approaches to prevent or reliably control knocking and other irregular combustion events. The majority of today’s highly efficient gasoline engines utilize downsizing. High mean pressures produce increased knocking, which frequently results in a reduction in the compression ratio at high specific powers. Beyond this, the phenomenon of pre-ignition has been linked to the rise in specific power in gasoline engines for many years. Charge-diluted concepts with high compression cause extreme knocking, potentially leading to catastrophic failure. The introduction of RDE legislation this year will further grow the requirements for combustion process development, as residual gas scavenging and enrichment to improve the knock limit will be legally restricted despite no relaxation of the need to reach the main center of heat release as early as possible. New solutions in thermodynamics and control engineering are urgently needed to further increase the efficiency of gasoline engines.