Predictive Maintenance in Dynamic Systems
Title | Predictive Maintenance in Dynamic Systems PDF eBook |
Author | Edwin Lughofer |
Publisher | Springer |
Pages | 564 |
Release | 2019-02-28 |
Genre | Technology & Engineering |
ISBN | 3030056457 |
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.
Predictive Maintenance in Dynamic Systems
Title | Predictive Maintenance in Dynamic Systems PDF eBook |
Author | Edwin Lughofer |
Publisher | Springer |
Pages | 567 |
Release | 2019-03-25 |
Genre | Technology & Engineering |
ISBN | 9783030056445 |
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.
An Introduction to Predictive Maintenance
Title | An Introduction to Predictive Maintenance PDF eBook |
Author | R. Keith Mobley |
Publisher | Elsevier |
Pages | 451 |
Release | 2002-10-24 |
Genre | Technology & Engineering |
ISBN | 0080478697 |
This second edition of An Introduction to Predictive Maintenance helps plant, process, maintenance and reliability managers and engineers to develop and implement a comprehensive maintenance management program, providing proven strategies for regularly monitoring critical process equipment and systems, predicting machine failures, and scheduling maintenance accordingly. Since the publication of the first edition in 1990, there have been many changes in both technology and methodology, including financial implications, the role of a maintenance organization, predictive maintenance techniques, various analyses, and maintenance of the program itself. This revision includes a complete update of the applicable chapters from the first edition as well as six additional chapters outlining the most recent information available. Having already been implemented and maintained successfully in hundreds of manufacturing and process plants worldwide, the practices detailed in this second edition of An Introduction to Predictive Maintenance will save plants and corporations, as well as U.S. industry as a whole, billions of dollars by minimizing unexpected equipment failures and its resultant high maintenance cost while increasing productivity. - A comprehensive introduction to a system of monitoring critical industrial equipment - Optimize the availability of process machinery and greatly reduce the cost of maintenance - Provides the means to improve product quality, productivity and profitability of manufacturing and production plants
Predictive Maintenance in Dynamic Systems
Title | Predictive Maintenance in Dynamic Systems PDF eBook |
Author | Edwin Lughofer |
Publisher | |
Pages | |
Release | 2019 |
Genre | Electronic books |
ISBN | 9783030056469 |
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power. .
From Prognostics and Health Systems Management to Predictive Maintenance 1
Title | From Prognostics and Health Systems Management to Predictive Maintenance 1 PDF eBook |
Author | Rafael Gouriveau |
Publisher | John Wiley & Sons |
Pages | 187 |
Release | 2016-10-14 |
Genre | Technology & Engineering |
ISBN | 1119371023 |
This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.
Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing
Title | Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing PDF eBook |
Author | Amit Kumar Tyagi |
Publisher | CRC Press |
Pages | 419 |
Release | 2024-10-23 |
Genre | Computers |
ISBN | 1040151396 |
Today, in this smart era, data analytics and artificial intelligence (AI) play an important role in predictive maintenance (PdM) within the manufacturing industry. This innovative approach aims to optimize maintenance strategies by predicting when equipment or machinery is likely to fail so that maintenance can be performed just in time to prevent costly breakdowns. This book contains up-to-date information on predictive maintenance and the latest advancements, trends, and tools required to reduce costs and save time for manufacturers and industries. Data Analytics and Artificial Intelligence for Predictive Maintenance in Smart Manufacturing provides an extensive and in-depth exploration of the intersection of data analytics, artificial intelligence, and predictive maintenance in the manufacturing industry and covers fundamental concepts, advanced techniques, case studies, and practical applications. Using a multidisciplinary approach, this book recognizes that predictive maintenance in manufacturing requires collaboration among engineers, data scientists, and business professionals and includes case studies from various manufacturing sectors showcasing successful applications of predictive maintenance. The real-world examples explain the useful benefits and ROI achieved by organizations. The emphasis is on scalability, making it suitable for both small and large manufacturing operations, and readers will learn how to adapt predictive maintenance strategies to different scales and industries. This book presents resources and references to keep readers updated on the latest advancements, tools, and trends, ensuring continuous learning. Serving as a reference guide, this book focuses on the latest advancements, trends, and tools relevant to predictive maintenance and can also serve as an educational resource for students studying manufacturing, data science, or related fields.
Industry 4.1
Title | Industry 4.1 PDF eBook |
Author | Fan-Tien Cheng |
Publisher | John Wiley & Sons |
Pages | 562 |
Release | 2021-10-26 |
Genre | Technology & Engineering |
ISBN | 1119739896 |
Industry 4.1 Intelligent Manufacturing with Zero Defects Discover the future of manufacturing with this comprehensive introduction to Industry 4.0 technologies from a celebrated expert in the field Industry 4.1: Intelligent Manufacturing with Zero Defects delivers an in-depth exploration of the functions of intelligent manufacturing and its applications and implementations through the Intelligent Factory Automation (iFA) System Platform. The book’s distinguished editor offers readers a broad range of resources that educate and enlighten on topics as diverse as the Internet of Things, edge computing, cloud computing, and cyber-physical systems. You’ll learn about three different advanced prediction technologies: Automatic Virtual Metrology (AVM), Intelligent Yield Management (IYM), and Intelligent Predictive Maintenance (IPM). Different use cases in a variety of manufacturing industries are covered, including both high-tech and traditional areas. In addition to providing a broad view of intelligent manufacturing and covering fundamental technologies like sensors, communication standards, and container technologies, the book offers access to experimental data through the IEEE DataPort. Finally, it shows readers how to build an intelligent manufacturing platform called an Advanced Manufacturing Cloud of Things (AMCoT). Readers will also learn from: An introduction to the evolution of automation and development strategy of intelligent manufacturing A comprehensive discussion of foundational concepts in sensors, communication standards, and container technologies An exploration of the applications of the Internet of Things, edge computing, and cloud computing The Intelligent Factory Automation (iFA) System Platform and its applications and implementations A variety of use cases of intelligent manufacturing, from industries like flat-panel, semiconductor, solar cell, automotive, aerospace, chemical, and blow molding machine Perfect for researchers, engineers, scientists, professionals, and students who are interested in the ongoing evolution of Industry 4.0 and beyond, Industry 4.1: Intelligent Manufacturing with Zero Defects will also win a place in the library of laypersons interested in intelligent manufacturing applications and concepts. Completely unique, this book shows readers how Industry 4.0 technologies can be applied to achieve the goal of Zero Defects for all product