Prediction of Protein Structure and the Principles of Protein Conformation
Title | Prediction of Protein Structure and the Principles of Protein Conformation PDF eBook |
Author | G.D. Fasman |
Publisher | Springer Science & Business Media |
Pages | 796 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1461315719 |
The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.
Prediction of Protein Structure and the Principles of Protein Conformation
Title | Prediction of Protein Structure and the Principles of Protein Conformation PDF eBook |
Author | G.D. Fasman |
Publisher | Springer Science & Business Media |
Pages | 822 |
Release | 1989-10-31 |
Genre | Science |
ISBN | 9780306431319 |
The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.
Prediction of Protein Structure and the Principles of Protein Conformation
Title | Prediction of Protein Structure and the Principles of Protein Conformation PDF eBook |
Author | G.D. Fasman |
Publisher | Springer |
Pages | 798 |
Release | 2012-02-09 |
Genre | Science |
ISBN | 9781461288602 |
The prediction of the conformation of proteins has developed from an intellectual exercise into a serious practical endeavor that has great promise to yield new stable enzymes, products of pharmacological significance, and catalysts of great potential. With the application of predic tion gaining momentum in various fields, such as enzymology and immunology, it was deemed time that a volume be published to make available a thorough evaluation of present methods, for researchers in this field to expound fully the virtues of various algorithms, to open the field to a wider audience, and to offer the scientific public an opportunity to examine carefully its successes and failures. In this manner the practitioners of the art could better evaluate the tools and the output so that their expectations and applications could be more realistic. The editor has assembled chapters by many of the main contributors to this area and simultaneously placed their programs at three national resources so that they are readily available to those who wish to apply them to their personal interests. These algorithms, written by their originators, when utilized on pes or larger computers, can instantaneously take a primary amino acid sequence and produce a two-or three-dimensional artistic image that gives satisfaction to one's esthetic sensibilities and food for thought concerning the structure and function of proteins. It is in this spirit that this volume was envisaged.
The Protein Folding Problem and Tertiary Structure Prediction
Title | The Protein Folding Problem and Tertiary Structure Prediction PDF eBook |
Author | Kenneth M.Jr. Merz |
Publisher | Springer Science & Business Media |
Pages | 585 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1468468316 |
A solution to the protein folding problem has eluded researchers for more than 30 years. The stakes are high. Such a solution will make 40,000 more tertiary structures available for immediate study by translating the DNA sequence information in the sequence databases into three-dimensional protein structures. This translation will be indispensable for the analy sis of results from the Human Genome Project, de novo protein design, and many other areas of biotechnological research. Finally, an in-depth study of the rules of protein folding should provide vital clues to the protein fold ing process. The search for these rules is therefore an important objective for theoretical molecular biology. Both experimental and theoretical ap proaches have been used in the search for a solution, with many promising results but no general solution. In recent years, there has been an exponen tial increase in the power of computers. This has triggered an incredible outburst of theoretical approaches to solving the protein folding problem ranging from molecular dynamics-based studies of proteins in solution to the actual prediction of protein structures from first principles. This volume attempts to present a concise overview of these advances. Adrian Roitberg and Ron Elber describe the locally enhanced sam pling/simulated annealing conformational search algorithm (Chapter 1), which is potentially useful for the rapid conformational search of larger molecular systems.
Principles of Protein Structure
Title | Principles of Protein Structure PDF eBook |
Author | G.E. Schulz |
Publisher | Springer Science & Business Media |
Pages | 328 |
Release | 2013-12-01 |
Genre | Science |
ISBN | 1461261376 |
New textbooks at all levels of chemistry appear with great regularity. Some fields like basic biochemistry, organic reaction mechanisms, and chemical thermodynamics are well represented by many excellent texts, and new or revised editions are published sufficiently often to keep up with progress in research. However, some areas of chemistry, especially many of those taught at the graduate level, suffer from a real lack of up-to-date textbooks. The most serious needs occur in fields that are rapidly changing. Textbooks in these subjects usually have to be written by scientists actually involved in the research which is advancing the field. It is not often easy to persuade such individuals to set time aside to help spread the knowledge they have accumulated. Our goal, in this series, is to pinpoint areas of chemistry where recent progress has outpaced what is covered in any available textbooks, and then seek out and persuade experts in these fields to produce relatively concise but instructive introductions to their fields. These should serve the needs of one semester or one quarter graduate courses in chemistry and biochemistry. In some cases the availability of texts in active research areas should help stimulate the creation of new courses.
Protein Structure Prediction
Title | Protein Structure Prediction PDF eBook |
Author | Michael J. E. Sternberg |
Publisher | Oxford University Press |
Pages | 298 |
Release | 1996 |
Genre | Philosophy |
ISBN | 9780199634972 |
The prediction of the three-dimensional structure of a protein from its sequence is a problem faced by an ever-increasing number of biological scientists as they strive to utilize genetic information. The increasing sizes of the sequence and structural databases, the improvements in computingpower, and the deeper understanding of the principles of protein structure have led to major developments in the field in the last few years. This book presents practical computer-based methods using the latest computer modelling algorithms.
Protein Actions: Principles and Modeling
Title | Protein Actions: Principles and Modeling PDF eBook |
Author | Ivet Bahar |
Publisher | Garland Science |
Pages | 337 |
Release | 2017-02-14 |
Genre | Science |
ISBN | 1351815016 |
Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.