Predicting Structured Data

Predicting Structured Data
Title Predicting Structured Data PDF eBook
Author Neural Information Processing Systems Foundation
Publisher MIT Press
Pages 361
Release 2007
Genre Algorithms
ISBN 0262026171

Download Predicting Structured Data Book in PDF, Epub and Kindle

State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.

Predicting Structured Data

Predicting Structured Data
Title Predicting Structured Data PDF eBook
Author Gökhan Bakir
Publisher Mit Press
Pages 360
Release 2007-07-27
Genre
ISBN 9780262528047

Download Predicting Structured Data Book in PDF, Epub and Kindle

Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field. Contributors Yasemin Altun, Gökhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daumé III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Pérez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schölkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston.

Learning from Structured Data

Learning from Structured Data
Title Learning from Structured Data PDF eBook
Author Martin Pavlovski
Publisher
Pages 142
Release 2021
Genre
ISBN

Download Learning from Structured Data Book in PDF, Epub and Kindle

A plethora of high-impact applications involve predictive modeling of structured data. In various domains, from hospital readmission prediction in the medical realm, though weather forecasting and event detection in power systems, up to conversion prediction in online businesses, the data holds a certain underlying structure. Building predictive models from such data calls for leveraging the structure as an additional source of information. Thus, a broad range of structure-aware approaches have been introduced, yet certain common challenges in many structured learning scenarios remain unresolved. This dissertation revolves around addressing the challenges of scalability, algorithmic stability and temporal awareness in several scenarios of learning from either graphically or sequentially structured data. Initially, the first two challenges are discussed from a structured regression standpoint. The studies addressing these challenges aim at designing scalable and algorithmically stable models for structured data, without compromising their prediction performance. It is further inspected whether such models can be applied to both static and dynamic (time-varying) graph data. To that end, a structured ensemble model is proposed to scale with the size of temporal graphs, while making stable and reliable yet accurate predictions on a real-world application involving gene expression prediction. In the case of static graphs, a theoretical insight is provided on the relationship between algorithmic stability and generalization in a structured regression setting. A stability-based objective function is designed to indirectly control the stability of a collaborative ensemble regressor, yielding generalization performance improvements on structured regression applications as diverse as predicting housing prices based on real-estate transactions and readmission prediction from hospital records. Modeling data that holds a sequential rather than a graphical structure requires addressing temporal awareness as one of the major challenges. In that regard, a model is proposed to generate time-aware representations of user activity sequences, intended to be seamlessly applicable across different user-related tasks, while sidestepping the burden of task-driven feature engineering. The quality and effectiveness of the time-aware user representations led to predictive performance improvements over state-of-the-art models on multiple large-scale conversion prediction tasks. Sequential data is also analyzed from the perspective of a high-impact application in the realm of power systems. Namely, detecting and further classifying disturbance events, as an important aspect of risk mitigation in power systems, is typically centered on the challenges of capturing structural characteristics in sequential synchrophasor recordings. Therefore, a thorough comparative analysis was conducted by assessing various traditional as well as more sophisticated event classification models under different domain-expert-assisted labeling scenarios. The experimental findings provide evidence that hierarchical convolutional neural networks (HCNNs), capable of automatically learning time-invariant feature transformations that preserve the structural characteristics of the synchrophasor signals, consistently outperform traditional model variants. Their performance is observed to further improve as more data are inspected by a domain expert, while smaller fractions of solely expert-inspected signals are already sufficient for HCNNs to achieve satisfactory event classification accuracy. Finally, insights into the impact of the domain expertise on the downstream classification performance are also discussed.

Advanced Structured Prediction

Advanced Structured Prediction
Title Advanced Structured Prediction PDF eBook
Author Sebastian Nowozin
Publisher MIT Press
Pages 430
Release 2014-12-05
Genre Computers
ISBN 0262028379

Download Advanced Structured Prediction Book in PDF, Epub and Kindle

An overview of recent work in the field of structured prediction, the building of predictive machine learning models for interrelated and dependent outputs. The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning. Contributors Jonas Behr, Yutian Chen, Fernando De La Torre, Justin Domke, Peter V. Gehler, Andrew E. Gelfand, Sébastien Giguère, Amir Globerson, Fred A. Hamprecht, Minh Hoai, Tommi Jaakkola, Jeremy Jancsary, Joseph Keshet, Marius Kloft, Vladimir Kolmogorov, Christoph H. Lampert, François Laviolette, Xinghua Lou, Mario Marchand, André F. T. Martins, Ofer Meshi, Sebastian Nowozin, George Papandreou, Daniel Průša, Gunnar Rätsch, Amélie Rolland, Bogdan Savchynskyy, Stefan Schmidt, Thomas Schoenemann, Gabriele Schweikert, Ben Taskar, Sinisa Todorovic, Max Welling, David Weiss, Thomáš Werner, Alan Yuille, Stanislav Živný

Machine Learning Pocket Reference

Machine Learning Pocket Reference
Title Machine Learning Pocket Reference PDF eBook
Author Matt Harrison
Publisher "O'Reilly Media, Inc."
Pages 320
Release 2019-08-27
Genre Computers
ISBN 149204749X

Download Machine Learning Pocket Reference Book in PDF, Epub and Kindle

With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines

Scalable Statistical Learning for Relation Prediction on Structured Data

Scalable Statistical Learning for Relation Prediction on Structured Data
Title Scalable Statistical Learning for Relation Prediction on Structured Data PDF eBook
Author Yi Huang
Publisher
Pages
Release 2020
Genre
ISBN

Download Scalable Statistical Learning for Relation Prediction on Structured Data Book in PDF, Epub and Kindle

Linguistic Structure Prediction

Linguistic Structure Prediction
Title Linguistic Structure Prediction PDF eBook
Author Noah A. Smith
Publisher Springer Nature
Pages 248
Release 2022-05-31
Genre Computers
ISBN 3031021436

Download Linguistic Structure Prediction Book in PDF, Epub and Kindle

A major part of natural language processing now depends on the use of text data to build linguistic analyzers. We consider statistical, computational approaches to modeling linguistic structure. We seek to unify across many approaches and many kinds of linguistic structures. Assuming a basic understanding of natural language processing and/or machine learning, we seek to bridge the gap between the two fields. Approaches to decoding (i.e., carrying out linguistic structure prediction) and supervised and unsupervised learning of models that predict discrete structures as outputs are the focus. We also survey natural language processing problems to which these methods are being applied, and we address related topics in probabilistic inference, optimization, and experimental methodology. Table of Contents: Representations and Linguistic Data / Decoding: Making Predictions / Learning Structure from Annotated Data / Learning Structure from Incomplete Data / Beyond Decoding: Inference