Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation

Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation
Title Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation PDF eBook
Author Armin Taheri
Publisher
Pages 0
Release 2020
Genre
ISBN

Download Predicting Phonon Transport in Two-Dimensional Materials Using First-Principles Calculations and the Boltzmann Transport Equation Book in PDF, Epub and Kindle

The main objective of this thesis is to study phonon thermal transport in two-dimensional (2D) materials using first-principles density functional theory (DFT) calculations and the full solution of the Boltzmann transport equation (BTE). A wide range of 2D materials including graphene, 2D structures of group-VA, and recently emerged NX (X=P, As, Sb) compound monolayers are considered. Special attention is given to a mode-by-mode study of the thermal tunability via strain and functionalization. First, this thesis investigated the sensitivity of the DFT-calculated intrinsic thermal conductivity and phonon properties of 2D materials to the choice of exchange-correlation (XC) and pseudopotential (PP). It was found that the choice of the XC-PP combination results in significant discrepancies among predicted thermal conductivities of graphene at room temperature, in the range of 5442-8677 Wm^(-1)K^(-1). The LDA-NC and PBE-PAW combinations predicted the thermal conductivities in best agreement with available experimental data. This sensitivity analysis was an essential first step towards using DFT to engineer the phonon thermal transport in 2D systems. Next, DFT was used to systematically investigate the strain-dependent lattice thermal conductivity of -arsenene and -phosphorene, 2D monolayers of group-VA. The results showed that the thermal conductivity in both monolayers exhibits an up-and-down behavior when biaxial tensile strain is applied in the range from 0% to 9%. An interplay between phonon group velocities, heat capacities, and relaxation times, is found to be responsible for this behaviour. Finally, this project investigated the thermal conductivity of nitrogen functionalized - NX (X=P, As, Sb) monolayers. The results showed that the room-temperature thermal conductivities of -NP, -NAs, and -NSb are about 1.1, 5.5, and 34.0 times higher than those of their single-element -P, -As, and -Sb monolayers, respectively. The phonon transport analysis revealed that higher phonon group velocities, as well as higher phonon lifetimes were responsible for such an enhancement in the thermal conductivities of - NX compounds compared to single-element group-VA monolayers. Also, it was found that -NP has the minimum thermal conductivity among -NX monolayers, while it has the minimum average atomic mass. This thesis provides valuable insight into phonon physics and thermal transport in novel 2D materials using advanced DFT calculations.

Predicting Phonon Transport in Two-dimensional Materials

Predicting Phonon Transport in Two-dimensional Materials
Title Predicting Phonon Transport in Two-dimensional Materials PDF eBook
Author Carlos Manuel Da Silva Leal
Publisher
Pages
Release 2016
Genre
ISBN

Download Predicting Phonon Transport in Two-dimensional Materials Book in PDF, Epub and Kindle

Over the last decade, substantial attention has been paid to novel nanostructures based on two-dimensional (2D) materials. Among the hundreds of 2D materials that have been successfully synthesized in recent years, graphene, boron nitride, and molybdenum disulfide are the ones that have been intensively studied. It has been demonstrated that these materials exhibit thermal conductivities significantly higher than those of bulk samples of the same material. However, little is known about the physics of phonons in these materials, especially when tensile strain is applied. Properties of these materials are still not well understood, and modelling approaches are still needed to support engineering design of these novel nanostructures. In this thesis, I use state-of-the-art atomistic simulation techniques in combination with statistical thermodynamics formulations to obtain the phonon properties (lifetime, group velocity, and heat capacity) and thermal conductivities of unstrained and strained samples of graphene, boron nitride, molybdenum disulfide, and also superlattices of graphene and boron nitride. Special emphasis is given to the role of the acoustic phonon modes and the thermal response of these materials to the application of tensile strain. I apply spectral analysis to a set of molecular dynamics trajectories to estimate phonon lifetimes, harmonic lattice dynamics to estimate phonon group velocities, and Bose-Einstein statistics to estimate phonon heat capacities. These phonon properties are used to predict the thermal conductivity by means of a mode-dependent equation from kinetic theory. In the superlattices, I study the variation of the frequency dependence of the phonon properties with the periodicity and interface configuration (zigzag and armchair) for superlattices with period lengths within the coherent regime. The results showed that the thermal conductivity decreases significantly from the shortest period length to the second period length, 13% across the interfaces and 16% along the interfaces. For greater periods, the conductivity across the interfaces continues decreasing at a smaller rate of 11 W/mK per period length increase, driven by changes in the phonon group velocities (coherent effects). In contrast, the conductivity along the interfaces slightly recovers at a rate of 2 W/mK per period, driven by changes in the phonon relaxation times (diffusive effects).

Two-dimensional Materials

Two-dimensional Materials
Title Two-dimensional Materials PDF eBook
Author Pramoda Kumar Nayak
Publisher BoD – Books on Demand
Pages 282
Release 2016-08-31
Genre Technology & Engineering
ISBN 9535125540

Download Two-dimensional Materials Book in PDF, Epub and Kindle

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Phonon Thermal Transport in Silicon-Based Nanomaterials

Phonon Thermal Transport in Silicon-Based Nanomaterials
Title Phonon Thermal Transport in Silicon-Based Nanomaterials PDF eBook
Author Hai-Peng Li
Publisher Springer
Pages 94
Release 2018-09-08
Genre Science
ISBN 9811326371

Download Phonon Thermal Transport in Silicon-Based Nanomaterials Book in PDF, Epub and Kindle

In this Brief, authors introduce the advance in theoretical and experimental techniques for determining the thermal conductivity in nanomaterials, and focus on review of their recent theoretical studies on the thermal properties of silicon–based nanomaterials, such as zero–dimensional silicon nanoclusters, one–dimensional silicon nanowires, and graphenelike two–dimensional silicene. The specific subject matters covered include: size effect of thermal stability and phonon thermal transport in spherical silicon nanoclusters, surface effects of phonon thermal transport in silicon nanowires, and defects effects of phonon thermal transport in silicene. The results obtained are supplemented by numerical calculations, presented as tables and figures. The potential applications of these findings in nanoelectrics and thermoelectric energy conversion are also discussed. In this regard, this Brief represents an authoritative, systematic, and detailed description of the current status of phonon thermal transport in silicon–based nanomaterials. This Brief should be a highly valuable reference for young scientists and postgraduate students active in the fields of nanoscale thermal transport and silicon-based nanomaterials.

Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials

Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials
Title Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials PDF eBook
Author Cameron Foss
Publisher
Pages
Release 2018
Genre
ISBN

Download Phonon Transport at Boundaries and Interfaces in Two-dimensional Materials Book in PDF, Epub and Kindle

A typical electronic or photonic device may consist of several materials each one potentially meeting at an interface or terminating with a free-surface boundary. As modern device dimensions reach deeper into the nanoscale regime, interfaces and boundaries become increasingly influential to both electrical and thermal energy transport. While a large majority of the device community focuses on the former, we focus here on the latter issue of thermal transport which is of great importance in implementing nanoscale devices as well as developing solutions for on-chip heat removal and waste heat scavenging. In this document we will discuss how modern performance enhancing techniques (strain, nanostructuring, alloying, etc.) affect thermal transport at boundaries and across interfaces through the avenue of three case studies. We use first-principles Density Functional Perturbation Theory to obtain the phonon spectrum of the materials of interest and then use the dispersion data as input to a phonon Boltzmann Transport model. First, we investigate the combined effects of strain and boundary scattering on the in-plane and cross-plane thermal conductivity of thin-film silicon and germanium. Second, we review a recently developed model for cross-dimensional (2D-3D) phonon transport and apply it to 3D-2D-3D stacked interfaces involving graphene and molybdenum disulfide 2D-layers. Third, we combine relevant models from earlier Chapters to study extrinsic effects, such as line edge roughness and substrate effects, on in-plane and through-plane thermal transport in 1H-phase transition metal dichalcogenide (TMD) alloys. Through these investigations we show that: (1) biaxial strain in Si and Ge thin-films can modulate cross-plane conductivity due to strong boundary scattering, (2) the thermal boundary conductance between 2D-3D materials can be enhanced in the presence of an encapsulating layer, and (3) the thermal conductivity of 1H-phase TMDs can be reduced by an order of magnitude through the combination of nanostructuring, alloying, and substrate effects.

Predicting Intrinsic and Interfacial Thermal Transport in Two-dimensional Materials

Predicting Intrinsic and Interfacial Thermal Transport in Two-dimensional Materials
Title Predicting Intrinsic and Interfacial Thermal Transport in Two-dimensional Materials PDF eBook
Author Alexander Joseph Gabourie
Publisher
Pages
Release 2021
Genre
ISBN

Download Predicting Intrinsic and Interfacial Thermal Transport in Two-dimensional Materials Book in PDF, Epub and Kindle

The semiconductor industry has rapidly innovated to meet the increasing needs of computationally demanding applications such as artificial intelligence and high-performance computing. Recent efforts have focused on reducing memory access times and the energy-per-computation by implementing heterogeneous systems-on-a-chip or systems-in-a-package. The natural convergence of these technologies is a monolithic three-dimensional (M3D) integrated circuit (IC). Unfortunately, conventional silicon processes require high temperatures that are incompatible with M3D-IC fabrication. Semiconducting two-dimensional (2D) materials like molybdenum disulfide (MoS2), which have good transistor characteristics and low-temperature processing capabilities, may enable the realization of M3D-ICs. However, MoS2 transistors suffer from self-heating which reduces performance, and high temperatures in M3D-ICs may exacerbate this problem. As such, characterizing the thermal properties of MoS2 is essential to designing MoS2 transistors with optimal performance. This thesis focuses on accurate, atomistic calculations of MoS2 thermal properties with an emphasis on structures where MoS2 is in contact with electrical insulators which, though ubiquitous in practical applications, cause difficulties for thermal measurements. The thesis begins with an extensive review of thermal conductivity (TC) and thermal boundary conductance (TBC) measurements of 2D materials. I examine the structural properties of promising 2D materials, briefly review the physics of relevant thermal properties, and present a comprehensive set of thermal property measurements. For each property, I highlight trends within individual and between multiple 2D materials while also highlighting the weaknesses and gaps in literature. Motivated by MoS2 applications, I present my calculations of the TC of monolayer MoS2 when supported or encased by the common insulator SiO2. Such data are noticeably missing in literature. This work demonstrates how the TC of monolayer MoS2 is substantially degraded when MoS2 is in contact with surrounding materials, as it will be in applications. I also show that, when supported or encased, bilayer MoS2 carries three times more heat than monolayer, a factor that should be considered when designing MoS2 transistors. To gain deeper insights into TC calculations, I compare three methods that calculate the phonon-frequency-dependent TC, one of which I propose for the first time. I demonstrate that the spectral heat current (SHC) method is the most computationally efficient and is best-suited for arbitrary atomic structures. Subsequent frequency-dependent TC calculations of MoS2 on amorphous and crystalline SiO2, AlN, and Al2O3 substrates reveal that contributions from long-wavelength MoS2 phonons, which carry most of the heat in MoS2, are significantly reduced, especially when MoS2 is in contact with amorphous substrates. I demonstrate how inserting an h-BN layer between MoS2 and each substrate can minimize the TC degradation from the substrate. Next, I present my TBC calculations of MoS2, which indicate that the substrate interactions which control the TC and TBC of MoS2 are different, suggesting that both properties can be simultaneously optimized. I then use these application-relevant TCs and TBCs to determine the thermal resistance of an MoS¬2 transistor, showing that a transistor based on a crystalline Al2O3 substrate leads to the lowest thermal resistance and temperature rise. I also demonstrate how TBC is the thermal bottleneck for most MoS2 transistors, especially for those with channel lengths longer than ~150 nm. Finally, I conclude with my thoughts on this work and briefly discuss directions for future research.

2D Materials

2D Materials
Title 2D Materials PDF eBook
Author Phaedon Avouris
Publisher Cambridge University Press
Pages 521
Release 2017-06-29
Genre Technology & Engineering
ISBN 1316738132

Download 2D Materials Book in PDF, Epub and Kindle

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.