Predicting IMF-Supported Programs: A Machine Learning Approach

Predicting IMF-Supported Programs: A Machine Learning Approach
Title Predicting IMF-Supported Programs: A Machine Learning Approach PDF eBook
Author Tsendsuren Batsuuri
Publisher International Monetary Fund
Pages 48
Release 2024-03-08
Genre Business & Economics
ISBN

Download Predicting IMF-Supported Programs: A Machine Learning Approach Book in PDF, Epub and Kindle

This study applies state-of-the-art machine learning (ML) techniques to forecast IMF-supported programs, analyzes the ML prediction results relative to traditional econometric approaches, explores non-linear relationships among predictors indicative of IMF-supported programs, and evaluates model robustness with regard to different feature sets and time periods. ML models consistently outperform traditional methods in out-of-sample prediction of new IMF-supported arrangements with key predictors that align well with the literature and show consensus across different algorithms. The analysis underscores the importance of incorporating a variety of external, fiscal, real, and financial features as well as institutional factors like membership in regional financing arrangements. The findings also highlight the varying influence of data processing choices such as feature selection, sampling techniques, and missing data imputation on the performance of different ML models and therefore indicate the usefulness of a flexible, algorithm-tailored approach. Additionally, the results reveal that models that are most effective in near and medium-term predictions may tend to underperform over the long term, thus illustrating the need for regular updates or more stable – albeit potentially near-term suboptimal – models when frequent updates are impractical.

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance

Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Title Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF eBook
Author El Bachir Boukherouaa
Publisher International Monetary Fund
Pages 35
Release 2021-10-22
Genre Business & Economics
ISBN 1589063953

Download Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance Book in PDF, Epub and Kindle

This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.

FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk

FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk
Title FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk PDF eBook
Author Majid Bazarbash
Publisher International Monetary Fund
Pages 34
Release 2019-05-17
Genre Business & Economics
ISBN 1498314422

Download FinTech in Financial Inclusion: Machine Learning Applications in Assessing Credit Risk Book in PDF, Epub and Kindle

Recent advances in digital technology and big data have allowed FinTech (financial technology) lending to emerge as a potentially promising solution to reduce the cost of credit and increase financial inclusion. However, machine learning (ML) methods that lie at the heart of FinTech credit have remained largely a black box for the nontechnical audience. This paper contributes to the literature by discussing potential strengths and weaknesses of ML-based credit assessment through (1) presenting core ideas and the most common techniques in ML for the nontechnical audience; and (2) discussing the fundamental challenges in credit risk analysis. FinTech credit has the potential to enhance financial inclusion and outperform traditional credit scoring by (1) leveraging nontraditional data sources to improve the assessment of the borrower’s track record; (2) appraising collateral value; (3) forecasting income prospects; and (4) predicting changes in general conditions. However, because of the central role of data in ML-based analysis, data relevance should be ensured, especially in situations when a deep structural change occurs, when borrowers could counterfeit certain indicators, and when agency problems arising from information asymmetry could not be resolved. To avoid digital financial exclusion and redlining, variables that trigger discrimination should not be used to assess credit rating.

Completing the Market: Generating Shadow CDS Spreads by Machine Learning

Completing the Market: Generating Shadow CDS Spreads by Machine Learning
Title Completing the Market: Generating Shadow CDS Spreads by Machine Learning PDF eBook
Author Nan Hu
Publisher International Monetary Fund
Pages 37
Release 2019-12-27
Genre Business & Economics
ISBN 1513524089

Download Completing the Market: Generating Shadow CDS Spreads by Machine Learning Book in PDF, Epub and Kindle

We compared the predictive performance of a series of machine learning and traditional methods for monthly CDS spreads, using firms’ accounting-based, market-based and macroeconomics variables for a time period of 2006 to 2016. We find that ensemble machine learning methods (Bagging, Gradient Boosting and Random Forest) strongly outperform other estimators, and Bagging particularly stands out in terms of accuracy. Traditional credit risk models using OLS techniques have the lowest out-of-sample prediction accuracy. The results suggest that the non-linear machine learning methods, especially the ensemble methods, add considerable value to existent credit risk prediction accuracy and enable CDS shadow pricing for companies missing those securities.

Machine Learning Techniques for Space Weather

Machine Learning Techniques for Space Weather
Title Machine Learning Techniques for Space Weather PDF eBook
Author Enrico Camporeale
Publisher Elsevier
Pages 454
Release 2018-05-31
Genre Science
ISBN 0128117893

Download Machine Learning Techniques for Space Weather Book in PDF, Epub and Kindle

Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms

Lasso Regressions and Forecasting Models in Applied Stress Testing

Lasso Regressions and Forecasting Models in Applied Stress Testing
Title Lasso Regressions and Forecasting Models in Applied Stress Testing PDF eBook
Author Mr.Jorge A. Chan-Lau
Publisher International Monetary Fund
Pages 34
Release 2017-05-05
Genre Business & Economics
ISBN 1475599021

Download Lasso Regressions and Forecasting Models in Applied Stress Testing Book in PDF, Epub and Kindle

Model selection and forecasting in stress tests can be facilitated using machine learning techniques. These techniques have proved robust in other fields for dealing with the curse of dimensionality, a situation often encountered in applied stress testing. Lasso regressions, in particular, are well suited for building forecasting models when the number of potential covariates is large, and the number of observations is small or roughly equal to the number of covariates. This paper presents a conceptual overview of lasso regressions, explains how they fit in applied stress tests, describes its advantages over other model selection methods, and illustrates their application by constructing forecasting models of sectoral probabilities of default in an advanced emerging market economy.

Big Data

Big Data
Title Big Data PDF eBook
Author Cornelia Hammer
Publisher International Monetary Fund
Pages 41
Release 2017-09-13
Genre Business & Economics
ISBN 1484318978

Download Big Data Book in PDF, Epub and Kindle

Big data are part of a paradigm shift that is significantly transforming statistical agencies, processes, and data analysis. While administrative and satellite data are already well established, the statistical community is now experimenting with structured and unstructured human-sourced, process-mediated, and machine-generated big data. The proposed SDN sets out a typology of big data for statistics and highlights that opportunities to exploit big data for official statistics will vary across countries and statistical domains. To illustrate the former, examples from a diverse set of countries are presented. To provide a balanced assessment on big data, the proposed SDN also discusses the key challenges that come with proprietary data from the private sector with regard to accessibility, representativeness, and sustainability. It concludes by discussing the implications for the statistical community going forward.