Predicting Fiscal Crises: A Machine Learning Approach
Title | Predicting Fiscal Crises: A Machine Learning Approach PDF eBook |
Author | Klaus-Peter Hellwig |
Publisher | International Monetary Fund |
Pages | 66 |
Release | 2021-05-27 |
Genre | Business & Economics |
ISBN | 1513573586 |
In this paper I assess the ability of econometric and machine learning techniques to predict fiscal crises out of sample. I show that the econometric approaches used in many policy applications cannot outperform a simple heuristic rule of thumb. Machine learning techniques (elastic net, random forest, gradient boosted trees) deliver significant improvements in accuracy. Performance of machine learning techniques improves further, particularly for developing countries, when I expand the set of potential predictors and make use of algorithmic selection techniques instead of relying on a small set of variables deemed important by the literature. There is considerable agreement across learning algorithms in the set of selected predictors: Results confirm the importance of external sector stock and flow variables found in the literature but also point to demographics and the quality of governance as important predictors of fiscal crises. Fiscal variables appear to have less predictive value, and public debt matters only to the extent that it is owed to external creditors.
Fiscal Crises
Title | Fiscal Crises PDF eBook |
Author | Mrs.Kerstin Gerling |
Publisher | International Monetary Fund |
Pages | 43 |
Release | 2017-04-03 |
Genre | Business & Economics |
ISBN | 1475592159 |
A key objective of fiscal policy is to maintain the sustainability of public finances and avoid crises. Remarkably, there is very limited analysis on fiscal crises. This paper presents a new database of fiscal crises covering different country groups, including low-income developing countries (LIDCs) that have been mostly ignored in the past. Countries faced on average two crises since 1970, with the highest frequency in LIDCs and lowest in advanced economies. The data sheds some light on policies and economic dynamics around crises. LIDCs, which are usually seen as more vulnerable to shocks, appear to suffer the least in crisis periods. Surprisingly, advanced economies face greater turbulence (growth declines sharply in the first two years of the crisis), with half of them experiencing economic contractions. Fiscal policy is usually procyclical as countries curtail expenditure growth when economic activity weakens. We also find that the decline in economic growth is magnified if accompanied by a financial crisis.
Prediction, Learning, and Games
Title | Prediction, Learning, and Games PDF eBook |
Author | Nicolo Cesa-Bianchi |
Publisher | Cambridge University Press |
Pages | 4 |
Release | 2006-03-13 |
Genre | Computers |
ISBN | 113945482X |
This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.
Empirical Asset Pricing
Title | Empirical Asset Pricing PDF eBook |
Author | Wayne Ferson |
Publisher | MIT Press |
Pages | 497 |
Release | 2019-03-12 |
Genre | Business & Economics |
ISBN | 0262039370 |
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance
Title | Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance PDF eBook |
Author | El Bachir Boukherouaa |
Publisher | International Monetary Fund |
Pages | 35 |
Release | 2021-10-22 |
Genre | Business & Economics |
ISBN | 1589063953 |
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Predicting IMF-Supported Programs: A Machine Learning Approach
Title | Predicting IMF-Supported Programs: A Machine Learning Approach PDF eBook |
Author | Tsendsuren Batsuuri |
Publisher | International Monetary Fund |
Pages | 48 |
Release | 2024-03-08 |
Genre | Business & Economics |
ISBN |
This study applies state-of-the-art machine learning (ML) techniques to forecast IMF-supported programs, analyzes the ML prediction results relative to traditional econometric approaches, explores non-linear relationships among predictors indicative of IMF-supported programs, and evaluates model robustness with regard to different feature sets and time periods. ML models consistently outperform traditional methods in out-of-sample prediction of new IMF-supported arrangements with key predictors that align well with the literature and show consensus across different algorithms. The analysis underscores the importance of incorporating a variety of external, fiscal, real, and financial features as well as institutional factors like membership in regional financing arrangements. The findings also highlight the varying influence of data processing choices such as feature selection, sampling techniques, and missing data imputation on the performance of different ML models and therefore indicate the usefulness of a flexible, algorithm-tailored approach. Additionally, the results reveal that models that are most effective in near and medium-term predictions may tend to underperform over the long term, thus illustrating the need for regular updates or more stable – albeit potentially near-term suboptimal – models when frequent updates are impractical.
Global Waves of Debt
Title | Global Waves of Debt PDF eBook |
Author | M. Ayhan Kose |
Publisher | World Bank Publications |
Pages | 403 |
Release | 2021-03-03 |
Genre | Business & Economics |
ISBN | 1464815453 |
The global economy has experienced four waves of rapid debt accumulation over the past 50 years. The first three debt waves ended with financial crises in many emerging market and developing economies. During the current wave, which started in 2010, the increase in debt in these economies has already been larger, faster, and broader-based than in the previous three waves. Current low interest rates mitigate some of the risks associated with high debt. However, emerging market and developing economies are also confronted by weak growth prospects, mounting vulnerabilities, and elevated global risks. A menu of policy options is available to reduce the likelihood that the current debt wave will end in crisis and, if crises do take place, will alleviate their impact.