Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
Title Practical Statistics for Data Scientists PDF eBook
Author Peter Bruce
Publisher "O'Reilly Media, Inc."
Pages 322
Release 2017-05-10
Genre Computers
ISBN 1491952911

Download Practical Statistics for Data Scientists Book in PDF, Epub and Kindle

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
Title Practical Statistics for Data Scientists PDF eBook
Author Peter Bruce
Publisher "O'Reilly Media, Inc."
Pages 317
Release 2017-05-10
Genre Computers
ISBN 1491952938

Download Practical Statistics for Data Scientists Book in PDF, Epub and Kindle

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Practical Statistics for Data Scientists

Practical Statistics for Data Scientists
Title Practical Statistics for Data Scientists PDF eBook
Author Peter C. Bruce
Publisher
Pages 298
Release 2017
Genre Big data
ISBN 9781491952955

Download Practical Statistics for Data Scientists Book in PDF, Epub and Kindle

"Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that 'learn' from data ; Unsupervised learning methods for extracting meaning from unlabeled data"--Provided by publisher.

Practical Statistics for Environmental and Biological Scientists

Practical Statistics for Environmental and Biological Scientists
Title Practical Statistics for Environmental and Biological Scientists PDF eBook
Author John Townend
Publisher John Wiley & Sons
Pages 290
Release 2013-04-30
Genre Science
ISBN 1118687418

Download Practical Statistics for Environmental and Biological Scientists Book in PDF, Epub and Kindle

All students and researchers in environmental and biological sciences require statistical methods at some stage of their work. Many have a preconception that statistics are difficult and unpleasant and find that the textbooks available are difficult to understand. Practical Statistics for Environmental and Biological Scientists provides a concise, user-friendly, non-technical introduction to statistics. The book covers planning and designing an experiment, how to analyse and present data, and the limitations and assumptions of each statistical method. The text does not refer to a specific computer package but descriptions of how to carry out the tests and interpret the results are based on the approaches used by most of the commonly used packages, e.g. Excel, MINITAB and SPSS. Formulae are kept to a minimum and relevant examples are included throughout the text.

Foundations of Statistics for Data Scientists

Foundations of Statistics for Data Scientists
Title Foundations of Statistics for Data Scientists PDF eBook
Author Alan Agresti
Publisher CRC Press
Pages 486
Release 2021-11-22
Genre Business & Economics
ISBN 1000462919

Download Foundations of Statistics for Data Scientists Book in PDF, Epub and Kindle

Foundations of Statistics for Data Scientists: With R and Python is designed as a textbook for a one- or two-term introduction to mathematical statistics for students training to become data scientists. It is an in-depth presentation of the topics in statistical science with which any data scientist should be familiar, including probability distributions, descriptive and inferential statistical methods, and linear modeling. The book assumes knowledge of basic calculus, so the presentation can focus on "why it works" as well as "how to do it." Compared to traditional "mathematical statistics" textbooks, however, the book has less emphasis on probability theory and more emphasis on using software to implement statistical methods and to conduct simulations to illustrate key concepts. All statistical analyses in the book use R software, with an appendix showing the same analyses with Python. The book also introduces modern topics that do not normally appear in mathematical statistics texts but are highly relevant for data scientists, such as Bayesian inference, generalized linear models for non-normal responses (e.g., logistic regression and Poisson loglinear models), and regularized model fitting. The nearly 500 exercises are grouped into "Data Analysis and Applications" and "Methods and Concepts." Appendices introduce R and Python and contain solutions for odd-numbered exercises. The book's website has expanded R, Python, and Matlab appendices and all data sets from the examples and exercises.

Statistics for Data Scientists

Statistics for Data Scientists
Title Statistics for Data Scientists PDF eBook
Author Maurits Kaptein
Publisher Springer Nature
Pages 342
Release 2022-02-02
Genre Computers
ISBN 3030105318

Download Statistics for Data Scientists Book in PDF, Epub and Kindle

This book provides an undergraduate introduction to analysing data for data science, computer science, and quantitative social science students. It uniquely combines a hands-on approach to data analysis – supported by numerous real data examples and reusable [R] code – with a rigorous treatment of probability and statistical principles. Where contemporary undergraduate textbooks in probability theory or statistics often miss applications and an introductory treatment of modern methods (bootstrapping, Bayes, etc.), and where applied data analysis books often miss a rigorous theoretical treatment, this book provides an accessible but thorough introduction into data analysis, using statistical methods combining the two viewpoints. The book further focuses on methods for dealing with large data-sets and streaming-data and hence provides a single-course introduction of statistical methods for data science.

Practical Statistics for Medical Research

Practical Statistics for Medical Research
Title Practical Statistics for Medical Research PDF eBook
Author Douglas G. Altman
Publisher CRC Press
Pages 624
Release 1990-11-22
Genre Mathematics
ISBN 1000228819

Download Practical Statistics for Medical Research Book in PDF, Epub and Kindle

Practical Statistics for Medical Research is a problem-based text for medical researchers, medical students, and others in the medical arena who need to use statistics but have no specialized mathematics background. The author draws on twenty years of experience as a consulting medical statistician to provide clear explanations to key statistical concepts, with a firm emphasis on practical aspects of designing and analyzing medical research. Using real data and including dozens of interesting data sets, this bestselling text gives special attention to the presentation and interpretation of results and the many real problems that arise in medical research.