Practical Statistical Power Analysis
Title | Practical Statistical Power Analysis PDF eBook |
Author | Zhiyong Zhang |
Publisher | Isdsa Press |
Pages | 358 |
Release | 2018-05 |
Genre | |
ISBN | 9781946728029 |
The importance of conducting a statistical power analysis at the beginning of a study is universally accepted. Without careful planning, a study can easily fail to detect an existing effect by chance. This book teaches how to conduct power analysis for a range of models from correlation and t-test to structural equation models and multilevel models. Both a graphical Web software WebPower and an R package are introduced to practically conduct the analysis.
Statistical Power Analysis for the Behavioral Sciences
Title | Statistical Power Analysis for the Behavioral Sciences PDF eBook |
Author | Jacob Cohen |
Publisher | Routledge |
Pages | 625 |
Release | 2013-05-13 |
Genre | Psychology |
ISBN | 1134742770 |
Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.
How Many Subjects?
Title | How Many Subjects? PDF eBook |
Author | Helena Chmura Kraemer |
Publisher | SAGE |
Pages | 128 |
Release | 1987-09 |
Genre | Mathematics |
ISBN | 9780803929494 |
How Many Subjects? is a practical guide to sample size calculations and general principles of cost-effective research. It introduces a simple technique of statistical power analysis which allows researchers to compute approximate sample sizes and power for a wide variety of research designs. Because the same technique is used with only slight modifications for different statistical tests, researchers can easily compare the sample sizes required by different designs and tests to make cost-effective decisions in planning a study. These comparisons, emphasized throughout the book, demonstrate important principles of design, measurement and analysis that are rarely discussed in courses or textbooks.
Power Analysis for Experimental Research
Title | Power Analysis for Experimental Research PDF eBook |
Author | R. Barker Bausell |
Publisher | Cambridge University Press |
Pages | 379 |
Release | 2002-09-19 |
Genre | Science |
ISBN | 1139441663 |
Power analysis is an essential tool for determining whether a statistically significant result can be expected in a scientific experiment prior to the experiment being performed. Many funding agencies and institutional review boards now require power analyses to be carried out before they will approve experiments, particularly where they involve the use of human subjects. This comprehensive, yet accessible, book provides practising researchers with step-by-step instructions for conducting power/sample size analyses, assuming only basic prior knowledge of summary statistics and the normal distribution. It contains a unified approach to statistical power analysis, with numerous easy-to-use tables to guide the reader without the need for further calculations or statistical expertise. This will be an indispensable text for researchers and graduates in the medical and biological sciences needing to apply power analysis in the design of their experiments.
Statistical Power Analysis with Missing Data
Title | Statistical Power Analysis with Missing Data PDF eBook |
Author | Adam Davey |
Publisher | Routledge |
Pages | 328 |
Release | 2009-08-20 |
Genre | Psychology |
ISBN | 1135269300 |
Statistical power analysis has revolutionized the ways in which we conduct and evaluate research. Similar developments in the statistical analysis of incomplete (missing) data are gaining more widespread applications. This volume brings statistical power and incomplete data together under a common framework, in a way that is readily accessible to those with only an introductory familiarity with structural equation modeling. It answers many practical questions such as: How missing data affects the statistical power in a study How much power is likely with different amounts and types of missing data How to increase the power of a design in the presence of missing data, and How to identify the most powerful design in the presence of missing data. Points of Reflection encourage readers to stop and test their understanding of the material. Try Me sections test one’s ability to apply the material. Troubleshooting Tips help to prevent commonly encountered problems. Exercises reinforce content and Additional Readings provide sources for delving more deeply into selected topics. Numerous examples demonstrate the book’s application to a variety of disciplines. Each issue is accompanied by its potential strengths and shortcomings and examples using a variety of software packages (SAS, SPSS, Stata, LISREL, AMOS, and MPlus). Syntax is provided using a single software program to promote continuity but in each case, parallel syntax using the other packages is presented in appendixes. Routines, data sets, syntax files, and links to student versions of software packages are found at www.psypress.com/davey. The worked examples in Part 2 also provide results from a wider set of estimated models. These tables, and accompanying syntax, can be used to estimate statistical power or required sample size for similar problems under a wide range of conditions. Class-tested at Temple, Virginia Tech, and Miami University of Ohio, this brief text is an ideal supplement for graduate courses in applied statistics, statistics II, intermediate or advanced statistics, experimental design, structural equation modeling, power analysis, and research methods taught in departments of psychology, human development, education, sociology, nursing, social work, gerontology and other social and health sciences. The book’s applied approach will also appeal to researchers in these areas. Sections covering Fundamentals, Applications, and Extensions are designed to take readers from first steps to mastery.
The Essential Guide to Effect Sizes
Title | The Essential Guide to Effect Sizes PDF eBook |
Author | Paul D. Ellis |
Publisher | Cambridge University Press |
Pages | 193 |
Release | 2010-07 |
Genre | Business & Economics |
ISBN | 0521142466 |
A jargon-free introduction for students and researchers looking to interpret the practical significance of their results.
Determining Sample Size and Power in Research Studies
Title | Determining Sample Size and Power in Research Studies PDF eBook |
Author | J. P. Verma |
Publisher | Springer Nature |
Pages | 138 |
Release | 2020-07-20 |
Genre | Mathematics |
ISBN | 9811552045 |
This book addresses sample size and power in the context of research, offering valuable insights for graduate and doctoral students as well as researchers in any discipline where data is generated to investigate research questions. It explains how to enhance the authenticity of research by estimating the sample size and reporting the power of the tests used. Further, it discusses the issue of sample size determination in survey studies as well as in hypothesis testing experiments so that readers can grasp the concept of statistical errors, minimum detectable difference, effect size, one-tail and two-tail tests and the power of the test. The book also highlights the importance of fixing these boundary conditions in enhancing the authenticity of research findings and improving the chances of research papers being accepted by respected journals. Further, it explores the significance of sample size by showing the power achieved in selected doctoral studies. Procedure has been discussed to fix power in the hypothesis testing experiment. One should usually have power at least 0.8 in the study because having power less than this will have the issue of practical significance of findings. If the power in any study is less than 0.5 then it would be better to test the hypothesis by tossing a coin instead of organizing the experiment. It also discusses determining sample size and power using the freeware G*Power software, based on twenty-one examples using different analyses, like t-test, parametric and non-parametric correlations, multivariate regression, logistic regression, independent and repeated measures ANOVA, mixed design, MANOVA and chi-square.