Piezoelectric Energy Harvesting

Piezoelectric Energy Harvesting
Title Piezoelectric Energy Harvesting PDF eBook
Author Alper Erturk
Publisher John Wiley & Sons
Pages 377
Release 2011-04-04
Genre Technology & Engineering
ISBN 1119991358

Download Piezoelectric Energy Harvesting Book in PDF, Epub and Kindle

The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.

Energy Harvesting for Autonomous Systems

Energy Harvesting for Autonomous Systems
Title Energy Harvesting for Autonomous Systems PDF eBook
Author Stephen Beeby
Publisher Artech House
Pages 303
Release 2014-05-14
Genre Technology & Engineering
ISBN 159693719X

Download Energy Harvesting for Autonomous Systems Book in PDF, Epub and Kindle

This unique resource provides a detailed understanding of the options for harvesting energy from localized, renewable sources to supply power to autonomous wireless systems. You are introduced to a variety of types of autonomous system and wireless networks and discover the capabilities of existing battery-based solutions, RF solutions, and fuel cells. The book focuses on the most promising harvesting techniques, including solar, kinetic, and thermal energy. You also learn the implications of the energy harvesting techniques on the design of the power management electronics in a system. This in-depth reference discusses each energy harvesting approach in detail, comparing and contrasting its potential in the field.

Energy Scavenging for Wireless Sensor Networks

Energy Scavenging for Wireless Sensor Networks
Title Energy Scavenging for Wireless Sensor Networks PDF eBook
Author Shad Roundy
Publisher Springer Science & Business Media
Pages 219
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461504856

Download Energy Scavenging for Wireless Sensor Networks Book in PDF, Epub and Kindle

The vast reduction in size and power consumption of CMOS circuitry has led to a large research effort based around the vision of wireless sensor networks. The proposed networks will be comprised of thousands of small wireless nodes that operate in a multi-hop fashion, replacing long transmission distances with many low power, low cost wireless devices. The result will be the creation of an intelligent environment responding to its inhabitants and ambient conditions. Wireless devices currently being designed and built for use in such environments typically run on batteries. However, as the networks increase in number and the devices decrease in size, the replacement of depleted batteries will not be practical. The cost of replacing batteries in a few devices that make up a small network about once per year is modest. However, the cost of replacing thousands of devices in a single building annually, some of which are in areas difficult to access, is simply not practical. Another approach would be to use a battery that is large enough to last the entire lifetime of the wireless sensor device. However, a battery large enough to last the lifetime of the device would dominate the overall system size and cost, and thus is not very attractive. Alternative methods of powering the devices that will make up the wireless networks are desperately needed.

Piezoelectric Nanomaterials for Biomedical Applications

Piezoelectric Nanomaterials for Biomedical Applications
Title Piezoelectric Nanomaterials for Biomedical Applications PDF eBook
Author Gianni Ciofani
Publisher Springer Science & Business Media
Pages 250
Release 2012-03-31
Genre Technology & Engineering
ISBN 3642280447

Download Piezoelectric Nanomaterials for Biomedical Applications Book in PDF, Epub and Kindle

Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies
Title Handbook of Silicon Based MEMS Materials and Technologies PDF eBook
Author Markku Tilli
Publisher Elsevier
Pages 1028
Release 2020-04-17
Genre Technology & Engineering
ISBN 012817787X

Download Handbook of Silicon Based MEMS Materials and Technologies Book in PDF, Epub and Kindle

Handbook of Silicon Based MEMS Materials and Technologies, Third Edition is a comprehensive guide to MEMS materials, technologies, and manufacturing with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, modeling, manufacturing, processing, system integration, measurement, and materials characterization techniques of MEMS structures. The third edition of this book provides an important up-to-date overview of the current and emerging technologies in MEMS making it a key reference for MEMS professionals, engineers, and researchers alike, and at the same time an essential education material for undergraduate and graduate students. - Provides comprehensive overview of leading-edge MEMS manufacturing technologies through the supply chain from silicon ingot growth to device fabrication and integration with sensor/actuator controlling circuits - Explains the properties, manufacturing, processing, measuring and modeling methods of MEMS structures - Reviews the current and future options for hermetic encapsulation and introduces how to utilize wafer level packaging and 3D integration technologies for package cost reduction and performance improvements - Geared towards practical applications presenting several modern MEMS devices including inertial sensors, microphones, pressure sensors and micromirrors

Triboelectric Nanogenerators

Triboelectric Nanogenerators
Title Triboelectric Nanogenerators PDF eBook
Author Zhong Lin Wang
Publisher Springer
Pages 537
Release 2016-08-17
Genre Technology & Engineering
ISBN 3319400398

Download Triboelectric Nanogenerators Book in PDF, Epub and Kindle

This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.

Micro Energy Harvesting

Micro Energy Harvesting
Title Micro Energy Harvesting PDF eBook
Author Danick Briand
Publisher John Wiley & Sons
Pages 492
Release 2015-06-22
Genre Technology & Engineering
ISBN 3527319026

Download Micro Energy Harvesting Book in PDF, Epub and Kindle

With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.