Power Magnetic Devices
Title | Power Magnetic Devices PDF eBook |
Author | Scott D. Sudhoff |
Publisher | John Wiley & Sons |
Pages | 658 |
Release | 2021-12-02 |
Genre | Technology & Engineering |
ISBN | 1119674603 |
Power Magnetic Devices Discover a cutting-edge discussion of the design process for power magnetic devices In the newly revised second edition of Power Magnetic Devices: A Multi-Objective Design Approach, accomplished engineer and author Dr. Scott D. Sudhoff delivers a thorough exploration of the design principles of power magnetic devices such as inductors, transformers, and rotating electric machinery using a systematic and consistent framework. The book includes new chapters on converter and inverter magnetic components (including three-phase and common-mode inductors) and elaborates on characteristics of power electronics that are required knowledge in magnetics. New chapters on parasitic capacitance and finite element analysis have also been incorporated into the new edition. The work further includes: A thorough introduction to evolutionary computing-based optimization and magnetic analysis techniques Discussions of force and torque production, electromagnet design, and rotating electric machine design Full chapters on high-frequency effects such as skin- and proximity-effect losses, core losses and their characterization, thermal analysis, and parasitic capacitance Treatments of dc-dc converter design, as well as three-phase and common-mode inductor design for inverters An extensive open-source MATLAB code base, PowerPoint slides, and a solutions manual Perfect for practicing power engineers and designers, Power Magnetic Devices will serve as an excellent textbook for advanced undergraduate and graduate courses in electromechanical and electromagnetic design.
Power Magnetic Devices
Title | Power Magnetic Devices PDF eBook |
Author | Scott D. Sudhoff |
Publisher | John Wiley & Sons |
Pages | 0 |
Release | 2014-02-17 |
Genre | Science |
ISBN | 9781118489994 |
Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices—including inductors, transformers, electromagnets, and rotating electric machinery—using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth. Power Magnetic Devices: Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery Offers a structured design approach based on single- and multi-objective optimization Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time Provides numerous case studies throughout the book to facilitate readers’ comprehension of the analysis and design process Includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codes Designed to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. MATLAB examples are available via the book support site.
Power Magnetic Devices
Title | Power Magnetic Devices PDF eBook |
Author | Scott D. Sudhoff |
Publisher | John Wiley & Sons |
Pages | 430 |
Release | 2014-01-30 |
Genre | Science |
ISBN | 1118824636 |
Presents a multi-objective design approach to the many power magnetic devices in use today Power Magnetic Devices: A Multi-Objective Design Approach addresses the design of power magnetic devices—including inductors, transformers, electromagnets, and rotating electric machinery—using a structured design approach based on formal single- and multi-objective optimization. The book opens with a discussion of evolutionary-computing-based optimization. Magnetic analysis techniques useful to the design of all the devices considered in the book are then set forth. This material is then used for inductor design so readers can start the design process. Core loss is next considered; this material is used to support transformer design. A chapter on force and torque production feeds into a chapter on electromagnet design. This is followed by chapters on rotating machinery and the design of a permanent magnet AC machine. Finally, enhancements to the design process including thermal analysis and AC conductor losses due to skin and proximity effects are set forth. Power Magnetic Devices: Focuses on the design process as it relates to power magnetic devices such as inductors, transformers, electromagnets, and rotating machinery Offers a structured design approach based on single- and multi-objective optimization Helps experienced designers take advantage of new techniques which can yield superior designs with less engineering time Provides numerous case studies throughout the book to facilitate readers’ comprehension of the analysis and design process Includes Powerpoint-slide-based student and instructor lecture notes and MATLAB-based examples, toolboxes, and design codes Designed to support the educational needs of students, Power Magnetic Devices: A Multi-Objective Design Approach also serves as a valuable reference tool for practicing engineers and designers. MATLAB examples are available via the book support site.
High-Frequency Magnetic Components
Title | High-Frequency Magnetic Components PDF eBook |
Author | Marian K. Kazimierczuk |
Publisher | John Wiley & Sons |
Pages | 510 |
Release | 2011-08-24 |
Genre | Technology & Engineering |
ISBN | 1119964911 |
If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
Electromechanical Motion Devices
Title | Electromechanical Motion Devices PDF eBook |
Author | Paul C. Krause |
Publisher | John Wiley & Sons |
Pages | 448 |
Release | 2020-03-04 |
Genre | Technology & Engineering |
ISBN | 1119489822 |
The updated third edition of the classic book that provides an introduction to electric machines and their emerging applications The thoroughly revised and updated third edition of Electromechanical Motion Devices contains an introduction to modern electromechanical devices and offers an understanding of the uses of electric machines in emerging applications such as in hybrid and electric vehicles. The authors—noted experts on the topic—put the focus on modern electric drive applications. The book includes basic theory, illustrative examples, and contains helpful practice problems designed to enhance comprehension. The text offers information on Tesla's rotating magnetic field, which is the foundation of reference frame theory and explores in detail the reference frame theory. The authors also review permanent-magnet ac, synchronous, and induction machines. In each chapter, the material is arranged so that if steady-state operation is the main concern, the reference frame derivation can be de-emphasized and focus placed on the steady state equations that are similar in form for all machines. This important new edition: • Features an expanded section on Power Electronics • Covers Tesla's rotating magnetic field • Contains information on the emerging applications of electric machines, and especially, modern electric drive applications • Includes online animations and a solutions manual for instructors Written for electrical engineering students and engineers working in the utility or automotive industry, Electromechanical Motion Devices offers an invaluable book for students and professionals interested in modern machine theory and applications.
Wireless Power Transfer for Electric Vehicles and Mobile Devices
Title | Wireless Power Transfer for Electric Vehicles and Mobile Devices PDF eBook |
Author | Chun T. Rim |
Publisher | John Wiley & Sons |
Pages | 626 |
Release | 2017-08-07 |
Genre | Technology & Engineering |
ISBN | 1119329051 |
From mobile, cable-free re-charging of electric vehicles, smart phones and laptops to collecting solar electricity from orbiting solar farms, wireless power transfer (WPT) technologies offer consumers and society enormous benefits. Written by innovators in the field, this comprehensive resource explains the fundamental principles and latest advances in WPT and illustrates key applications of this emergent technology. Key features and coverage include: The fundamental principles of WPT to practical applications on dynamic charging and static charging of EVs and smartphones. Theories for inductive power transfer (IPT) such as the coupled inductor model, gyrator circuit model, and magnetic mirror model. IPTs for road powered EVs, including controller, compensation circuit, electro-magnetic field cancel, large tolerance, power rail segmentation, and foreign object detection. IPTs for static charging for EVs and large tolerance and capacitive charging issues, as well as IPT mobile applications such as free space omnidirectional IPT by dipole coils and 2D IPT for robots. Principle and applications of capacitive power transfer. Synthesized magnetic field focusing, wireless nuclear instrumentation, and future WPT. A technical asset for engineers in the power electronics, internet of things and automotive sectors, Wireless Power Transfer for Electric Vehicles and Mobile Devices is an essential design and analysis guide and an important reference for graduate and higher undergraduate students preparing for careers in these industries.
Proceedings of the Fifth International Symposium on Magnetic Materials, Processes, and Devices
Title | Proceedings of the Fifth International Symposium on Magnetic Materials, Processes, and Devices PDF eBook |
Author | Lubomyr Taras Romankiw |
Publisher | The Electrochemical Society |
Pages | 730 |
Release | 1999 |
Genre | Computers |
ISBN | 9781566772143 |