Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
Title Partial Differential Equations of Mathematical Physics PDF eBook
Author S. L. Sobolev
Publisher Courier Corporation
Pages 452
Release 1964-01-01
Genre Science
ISBN 9780486659640

Download Partial Differential Equations of Mathematical Physics Book in PDF, Epub and Kindle

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Function Spaces and Potential Theory

Function Spaces and Potential Theory
Title Function Spaces and Potential Theory PDF eBook
Author David R. Adams
Publisher Springer Science & Business Media
Pages 372
Release 2012-12-06
Genre Mathematics
ISBN 3662032821

Download Function Spaces and Potential Theory Book in PDF, Epub and Kindle

"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society

Potential Theory

Potential Theory
Title Potential Theory PDF eBook
Author Lester L. Helms
Publisher Springer Science & Business Media
Pages 494
Release 2014-04-10
Genre Mathematics
ISBN 1447164229

Download Potential Theory Book in PDF, Epub and Kindle

Potential Theory presents a clear path from calculus to classical potential theory and beyond, with the aim of moving the reader into the area of mathematical research as quickly as possible. The subject matter is developed from first principles using only calculus. Commencing with the inverse square law for gravitational and electromagnetic forces and the divergence theorem, the author develops methods for constructing solutions of Laplace's equation on a region with prescribed values on the boundary of the region. The latter half of the book addresses more advanced material aimed at those with the background of a senior undergraduate or beginning graduate course in real analysis. Starting with solutions of the Dirichlet problem subject to mixed boundary conditions on the simplest of regions, methods of morphing such solutions onto solutions of Poisson's equation on more general regions are developed using diffeomorphisms and the Perron-Wiener-Brelot method, culminating in application to Brownian motion. In this new edition, many exercises have been added to reconnect the subject matter to the physical sciences. This book will undoubtedly be useful to graduate students and researchers in mathematics, physics and engineering.

Potentials and Partial Differential Equations

Potentials and Partial Differential Equations
Title Potentials and Partial Differential Equations PDF eBook
Author Suzanne Lenhart
Publisher Walter de Gruyter GmbH & Co KG
Pages 365
Release 2023-05-22
Genre Mathematics
ISBN 3110792788

Download Potentials and Partial Differential Equations Book in PDF, Epub and Kindle

This volume is dedicated to the legacy of David R. Adams (1941-2021) and discusses calculus of variations, functional - harmonic - potential analysis, partial differential equations, and their applications in modeling, mathematical physics, and differential - integral geometry.

Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics
Title Partial Differential Equations of Mathematical Physics PDF eBook
Author Arthur Godon Webster
Publisher Courier Dover Publications
Pages 465
Release 2016-06-20
Genre Mathematics
ISBN 0486805158

Download Partial Differential Equations of Mathematical Physics Book in PDF, Epub and Kindle

A classic treatise on partial differential equations, this comprehensive work by one of America's greatest early mathematical physicists covers the basic method, theory, and application of partial differential equations. In addition to its value as an introductory and supplementary text for students, this volume constitutes a fine reference for mathematicians, physicists, and research engineers. Detailed coverage includes Fourier series; integral and elliptic equations; spherical, cylindrical, and ellipsoidal harmonics; Cauchy's method; boundary problems; the Riemann-Volterra method; and many other basic topics. The self-contained treatment fully develops the theory and application of partial differential equations to virtually every relevant field: vibration, elasticity, potential theory, the theory of sound, wave propagation, heat conduction, and many more. A helpful Appendix provides background on Jacobians, double limits, uniform convergence, definite integrals, complex variables, and linear differential equations.

Distributions, Partial Differential Equations, and Harmonic Analysis

Distributions, Partial Differential Equations, and Harmonic Analysis
Title Distributions, Partial Differential Equations, and Harmonic Analysis PDF eBook
Author Dorina Mitrea
Publisher Springer Science & Business Media
Pages 475
Release 2013-09-20
Genre Mathematics
ISBN 1461482089

Download Distributions, Partial Differential Equations, and Harmonic Analysis Book in PDF, Epub and Kindle

​The theory of distributions constitutes an essential tool in the study of partial differential equations. This textbook would offer, in a concise, largely self-contained form, a rapid introduction to the theory of distributions and its applications to partial differential equations, including computing fundamental solutions for the most basic differential operators: the Laplace, heat, wave, Lam\'e and Schrodinger operators.​

Partial Differential Equations

Partial Differential Equations
Title Partial Differential Equations PDF eBook
Author Walter A. Strauss
Publisher John Wiley & Sons
Pages 467
Release 2007-12-21
Genre Mathematics
ISBN 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.