Population Balances
Title | Population Balances PDF eBook |
Author | Doraiswami Ramkrishna |
Publisher | Elsevier |
Pages | 373 |
Release | 2000-08-08 |
Genre | Science |
ISBN | 0080539246 |
Engineers encounter particles in a variety of systems. The particles are either naturally present or engineered into these systems. In either case these particles often significantly affect the behavior of such systems. This book provides a framework for analyzing these dispersed phase systems and describes how to synthesize the behavior of the population particles and their environment from the behavior of single particles in their local environments. Population balances are of key relevance to a very diverse group of scientists, including astrophysicists, high-energy physicists, geophysicists, colloid chemists, biophysicists, materials scientists, chemical engineers, and meteorologists. Chemical engineers have put population balances to most use, with applications in the areas of crystallization; gas-liquid, liquid-liquid, and solid-liquid dispersions; liquid membrane systems; fluidized bed reactors; aerosol reactors; and microbial cultures. Ramkrishna provides a clear and general treatment of population balances with emphasis on their wide range of applicability. New insight into population balance models incorporating random particle growth, dynamic morphological structure, and complex multivariate formulations with a clear exposition of their mathematical derivation is presented. Population Balances provides the only available treatment of the solution of inverse problems essential for identification of population balance models for breakage and aggregation processes, particle nucleation, growth processes, and more. This book is especially useful for process engineers interested in the simulation and control of particulate systems. Additionally, comprehensive treatment of the stochastic formulation of small systems provides for the modeling of stochastic systems with promising new areas of applications such as the design of sterilization systems and radiation treatment of cancerous tumors. - A clear and general treatment of population balances with emphasis on their wide range of applicability. Thus all processes involving solid-fluid and liquid-liquid dispersions, biological populations, etc. are encompassed - Provides new insight into population balance models incorporating random particle growth, dynamic morphological structure, and complex multivariate formulations with a clear exposition of their mathematical derivation - Presents a wide range of solution techniques, Monte Carlo simulation methods with a lucid exposition of their origin and scope for enhancing computational efficiency - An account of self-similar solutions of population balance equations and their significance to the treatment of data on particulate systems - The only available treatment of the solution of inverse problems essential for identification of population balance models for breakage and aggregation processes, particle nucleation and growth processes and so on - A comprehensive treatment of the stochastic formulation of small systems with several new applications
Multiphase Flow Analysis Using Population Balance Modeling
Title | Multiphase Flow Analysis Using Population Balance Modeling PDF eBook |
Author | Guan Heng Yeoh |
Publisher | Butterworth-Heinemann |
Pages | 385 |
Release | 2013-08-19 |
Genre | Science |
ISBN | 0080982336 |
Written by leading multiphase flow and CFD experts, this book enables engineers and researchers to understand the use of PBM and CFD frameworks. Population balance approaches can now be used in conjunction with CFD, effectively driving more efficient and effective multiphase flow processes. Engineers familiar with standard CFD software, including ANSYS-CFX and ANSYS–Fluent, will be able to use the tools and approaches presented in this book in the effective research, modeling and control of multiphase flow problems. - Builds a complete understanding of the theory behind the application of population balance models and an appreciation of the scale-up of computational fluid dynamics (CFD) and population balance modeling (PBM) to a variety of engineering and industry applications in chemical, pharmaceutical, energy and petrochemical sectors - The tools in this book provide the opportunity to incorporate more accurate models in the design of chemical and particulate based multiphase processes - Enables readers to translate theory to practical use with CFD software
Modelling Batch Systems Using Population Balances
Title | Modelling Batch Systems Using Population Balances PDF eBook |
Author | |
Publisher | Bookboon |
Pages | 58 |
Release | |
Genre | |
ISBN | 8776811808 |
Industrial Crystallization
Title | Industrial Crystallization PDF eBook |
Author | Alison Lewis |
Publisher | Cambridge University Press |
Pages | 354 |
Release | 2015-07-02 |
Genre | Technology & Engineering |
ISBN | 1316299082 |
Bridging the gap between theory and practice, this text provides the reader with a comprehensive overview of industrial crystallization. Newcomers will learn all of the most important topics in industrial crystallization, from key concepts and basic theory to industrial practices. Topics covered include the characterization of a crystalline product and the basic process design for crystallization, as well as batch crystallization, measurement techniques, and details on precipitation, melt crystallization and polymorphism. Each chapter begins with an introduction explaining the importance of the topic, and is supported by homework problems and worked examples. Real world case studies are also provided, as well as new industry-relevant information, making this is an ideal resource for industry practitioners, students, and researchers in the fields of industrial crystallization, separation processes, particle synthesis, and particle technology.
Design and Processing of Particulate Products
Title | Design and Processing of Particulate Products PDF eBook |
Author | Jim Litster |
Publisher | Cambridge University Press |
Pages | 343 |
Release | 2016-10-20 |
Genre | Science |
ISBN | 1107007372 |
A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.
Dynamic Flowsheet Simulation of Solids Processes
Title | Dynamic Flowsheet Simulation of Solids Processes PDF eBook |
Author | Stefan Heinrich |
Publisher | Springer Nature |
Pages | 626 |
Release | 2020-06-20 |
Genre | Science |
ISBN | 3030451682 |
This book presents the latest advances in flowsheet simulation of solids processes, focusing on the dynamic behaviour of systems with interconnected solids processing units, but also covering stationary simulation. The book includes the modelling of solids processing units, for example for comminution, sifting and particle formulation and also for reaction systems. Furthermore, it examines new approaches for the description of solids and their property distributions and for the mathematical treatment of flowsheets with multivariate population balances.
Theory of Particulate Processes
Title | Theory of Particulate Processes PDF eBook |
Author | Alan Ranodolph |
Publisher | Elsevier |
Pages | 386 |
Release | 2012-12-02 |
Genre | Science |
ISBN | 0323161812 |
Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization, Second Edition covers the numerous population balance-based particulate studies. This edition emerged from the notes for an industrial short course on crystallization. This book is divided into 10 chapters and begins with an outline of the methods for representation of particle distributions and a systematic approach to the predictive modeling of processes where there is a need to characterize distributions in time and space and by some identifying property. The succeeding chapters provide a specific and more elementary approach to modeling crystal size distributions, as well as the modeling the kinetics of crystal nucleation and growth rates. Other chapters discuss a wide range of system analysis and design considerations specific to crystallization for both the steady state and unsteady state. The final chapters illustrate the use of a population balance analysis to interpret data from both laboratory and process equipment. These chapters also explore a wide variety of particulate processes and systems for which the population balance analysis is useful. This book is of great value to graduate students with particulate systems course.