Poisson Point Processes and Their Application to Markov Processes

Poisson Point Processes and Their Application to Markov Processes
Title Poisson Point Processes and Their Application to Markov Processes PDF eBook
Author Kiyosi Itô
Publisher Springer
Pages 54
Release 2015-12-24
Genre Mathematics
ISBN 981100272X

Download Poisson Point Processes and Their Application to Markov Processes Book in PDF, Epub and Kindle

An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m

An Introduction to the Theory of Point Processes

An Introduction to the Theory of Point Processes
Title An Introduction to the Theory of Point Processes PDF eBook
Author D.J. Daley
Publisher Springer Science & Business Media
Pages 487
Release 2006-04-10
Genre Mathematics
ISBN 0387215646

Download An Introduction to the Theory of Point Processes Book in PDF, Epub and Kindle

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.

Point Process Theory and Applications

Point Process Theory and Applications
Title Point Process Theory and Applications PDF eBook
Author Martin Jacobsen
Publisher Springer Science & Business Media
Pages 325
Release 2006-07-27
Genre Mathematics
ISBN 0817644636

Download Point Process Theory and Applications Book in PDF, Epub and Kindle

Mathematically rigorous exposition of the basic theory of marked point processes and piecewise deterministic stochastic processes Point processes are constructed from scratch with detailed proofs Includes applications with examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management, and queueing theory Accessible to a wider cross-disciplinary audience

Markov Processes for Stochastic Modeling

Markov Processes for Stochastic Modeling
Title Markov Processes for Stochastic Modeling PDF eBook
Author Oliver Ibe
Publisher Newnes
Pages 515
Release 2013-05-22
Genre Mathematics
ISBN 0124078397

Download Markov Processes for Stochastic Modeling Book in PDF, Epub and Kindle

Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.

Markov Point Processes And Their Applications

Markov Point Processes And Their Applications
Title Markov Point Processes And Their Applications PDF eBook
Author Marie-colette Van Lieshout
Publisher World Scientific
Pages 185
Release 2000-07-12
Genre Mathematics
ISBN 1783262508

Download Markov Point Processes And Their Applications Book in PDF, Epub and Kindle

These days, an increasing amount of information can be obtained in graphical forms, such as weather maps, soil samples, locations of nests in a breeding colony, microscopical slices, satellite images, radar or medical scans and X-ray techniques. “High level” image analysis is concerned with the global interpretation of images, attempting to reduce it to a compact description of the salient features of the scene.This book takes a stochastic approach. It studies Markov object processes, showing that they form a flexible class of models for a range of problems involving the interpretation of spatial data. Applications can be found in statistical physics (under the name of “Gibbs processes”), environmental mapping of diseases, forestry, identification of ore structure in materials science, signal analysis, object recognition, robot vision, and interpretation of images from medical scans or confocal microscopy.

Point Processes

Point Processes
Title Point Processes PDF eBook
Author D.R. Cox
Publisher Routledge
Pages 188
Release 2018-12-19
Genre Mathematics
ISBN 135142386X

Download Point Processes Book in PDF, Epub and Kindle

There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.

Statistical Inference and Simulation for Spatial Point Processes

Statistical Inference and Simulation for Spatial Point Processes
Title Statistical Inference and Simulation for Spatial Point Processes PDF eBook
Author Jesper Moller
Publisher CRC Press
Pages 320
Release 2003-09-25
Genre Mathematics
ISBN 9780203496930

Download Statistical Inference and Simulation for Spatial Point Processes Book in PDF, Epub and Kindle

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.