Platform and Model Design for Responsible AI

Platform and Model Design for Responsible AI
Title Platform and Model Design for Responsible AI PDF eBook
Author Amita Kapoor
Publisher Packt Publishing Ltd
Pages 516
Release 2023-04-28
Genre Computers
ISBN 1803249773

Download Platform and Model Design for Responsible AI Book in PDF, Epub and Kindle

Craft ethical AI projects with privacy, fairness, and risk assessment features for scalable and distributed systems while maintaining explainability and sustainability Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn risk assessment for machine learning frameworks in a global landscape Discover patterns for next-generation AI ecosystems for successful product design Make explainable predictions for privacy and fairness-enabled ML training Book Description AI algorithms are ubiquitous and used for tasks, from recruiting to deciding who will get a loan. With such widespread use of AI in the decision-making process, it's necessary to build an explainable, responsible, transparent, and trustworthy AI-enabled system. With Platform and Model Design for Responsible AI, you'll be able to make existing black box models transparent. You'll be able to identify and eliminate bias in your models, deal with uncertainty arising from both data and model limitations, and provide a responsible AI solution. You'll start by designing ethical models for traditional and deep learning ML models, as well as deploying them in a sustainable production setup. After that, you'll learn how to set up data pipelines, validate datasets, and set up component microservices in a secure and private way in any cloud-agnostic framework. You'll then build a fair and private ML model with proper constraints, tune the hyperparameters, and evaluate the model metrics. By the end of this book, you'll know the best practices to comply with data privacy and ethics laws, in addition to the techniques needed for data anonymization. You'll be able to develop models with explainability, store them in feature stores, and handle uncertainty in model predictions. What you will learn Understand the threats and risks involved in ML models Discover varying levels of risk mitigation strategies and risk tiering tools Apply traditional and deep learning optimization techniques efficiently Build auditable and interpretable ML models and feature stores Understand the concept of uncertainty and explore model explainability tools Develop models for different clouds including AWS, Azure, and GCP Explore ML orchestration tools such as Kubeflow and Vertex AI Incorporate privacy and fairness in ML models from design to deployment Who this book is for This book is for experienced machine learning professionals looking to understand the risks and leakages of ML models and frameworks, and learn to develop and use reusable components to reduce effort and cost in setting up and maintaining the AI ecosystem.

Responsible AI

Responsible AI
Title Responsible AI PDF eBook
Author CSIRO
Publisher Addison-Wesley Professional
Pages 425
Release 2023-12-08
Genre Computers
ISBN 0138073880

Download Responsible AI Book in PDF, Epub and Kindle

THE FIRST PRACTICAL GUIDE FOR OPERATIONALIZING RESPONSIBLE AI ̃FROM MUL TI°LEVEL GOVERNANCE MECHANISMS TO CONCRETE DESIGN PATTERNS AND SOFTWARE ENGINEERING TECHNIQUES. AI is solving real-world challenges and transforming industries. Yet, there are serious concerns about its ability to behave and make decisions in a responsible way. Operationalizing responsible AI is about providing concrete guidelines to a wide range of decisionmakers and technologists on how to govern, design, and build responsible AI systems. These include governance mechanisms at the industry, organizational, and team level; software engineering best practices; architecture styles and design patterns; system-level techniques connecting code with data and models; and trade-offs in design decisions. Responsible AI includes a set of practices that technologists (for example, technology-conversant decision-makers, software developers, and AI practitioners) can undertake to ensure the AI systems they develop or adopt are trustworthy throughout the entire lifecycle and can be trusted by those who use them. The book offers guidelines and best practices not just for the AI part of a system, but also for the much larger software infrastructure that typically wraps around the AI. First book of its kind to cover the topic of operationalizing responsible AI from the perspective of the entire software development life cycle. Concrete and actionable guidelines throughout the lifecycle of AI systems, including governance mechanisms, process best practices, design patterns, and system engineering techniques. Authors are leading experts in the areas of responsible technology, AI engineering, and software engineering. Reduce the risks of AI adoption, accelerate AI adoption in responsible ways, and translate ethical principles into products, consultancy, and policy impact to support the AI industry. Online repository of patterns, techniques, examples, and playbooks kept up-to-date by the authors. Real world case studies to demonstrate responsible AI in practice. Chart the course to responsible AI excellence, from governance to design, with actionable insights and engineering prowess found in this defi nitive guide.

Responsible AI in the Enterprise

Responsible AI in the Enterprise
Title Responsible AI in the Enterprise PDF eBook
Author Adnan Masood
Publisher Packt Publishing Ltd
Pages 318
Release 2023-07-31
Genre Computers
ISBN 1803249668

Download Responsible AI in the Enterprise Book in PDF, Epub and Kindle

Build and deploy your AI models successfully by exploring model governance, fairness, bias, and potential pitfalls Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn ethical AI principles, frameworks, and governance Understand the concepts of fairness assessment and bias mitigation Introduce explainable AI and transparency in your machine learning models Book DescriptionResponsible AI in the Enterprise is a comprehensive guide to implementing ethical, transparent, and compliant AI systems in an organization. With a focus on understanding key concepts of machine learning models, this book equips you with techniques and algorithms to tackle complex issues such as bias, fairness, and model governance. Throughout the book, you’ll gain an understanding of FairLearn and InterpretML, along with Google What-If Tool, ML Fairness Gym, IBM AI 360 Fairness tool, and Aequitas. You’ll uncover various aspects of responsible AI, including model interpretability, monitoring and management of model drift, and compliance recommendations. You’ll gain practical insights into using AI governance tools to ensure fairness, bias mitigation, explainability, privacy compliance, and privacy in an enterprise setting. Additionally, you’ll explore interpretability toolkits and fairness measures offered by major cloud AI providers like IBM, Amazon, Google, and Microsoft, while discovering how to use FairLearn for fairness assessment and bias mitigation. You’ll also learn to build explainable models using global and local feature summary, local surrogate model, Shapley values, anchors, and counterfactual explanations. By the end of this book, you’ll be well-equipped with tools and techniques to create transparent and accountable machine learning models.What you will learn Understand explainable AI fundamentals, underlying methods, and techniques Explore model governance, including building explainable, auditable, and interpretable machine learning models Use partial dependence plot, global feature summary, individual condition expectation, and feature interaction Build explainable models with global and local feature summary, and influence functions in practice Design and build explainable machine learning pipelines with transparency Discover Microsoft FairLearn and marketplace for different open-source explainable AI tools and cloud platforms Who this book is for This book is for data scientists, machine learning engineers, AI practitioners, IT professionals, business stakeholders, and AI ethicists who are responsible for implementing AI models in their organizations.

Responsible Artificial Intelligence

Responsible Artificial Intelligence
Title Responsible Artificial Intelligence PDF eBook
Author Virginia Dignum
Publisher Springer Nature
Pages 127
Release 2019-11-04
Genre Computers
ISBN 3030303713

Download Responsible Artificial Intelligence Book in PDF, Epub and Kindle

In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Responsible AI

Responsible AI
Title Responsible AI PDF eBook
Author Sray Agarwal
Publisher Springer Nature
Pages 189
Release 2021-09-13
Genre Computers
ISBN 3030768600

Download Responsible AI Book in PDF, Epub and Kindle

This book is written for software product teams that use AI to add intelligent models to their products or are planning to use it. As AI adoption grows, it is becoming important that all AI driven products can demonstrate they are not introducing any bias to the AI-based decisions they are making, as well as reducing any pre-existing bias or discrimination. The responsibility to ensure that the AI models are ethical and make responsible decisions does not lie with the data scientists alone. The product owners and the business analysts are as important in ensuring bias-free AI as the data scientists on the team. This book addresses the part that these roles play in building a fair, explainable and accountable model, along with ensuring model and data privacy. Each chapter covers the fundamentals for the topic and then goes deep into the subject matter – providing the details that enable the business analysts and the data scientists to implement these fundamentals. AI research is one of the most active and growing areas of computer science and statistics. This book includes an overview of the many techniques that draw from the research or are created by combining different research outputs. Some of the techniques from relevant and popular libraries are covered, but deliberately not drawn very heavily from as they are already well documented, and new research is likely to replace some of it.

Trustworthy AI

Trustworthy AI
Title Trustworthy AI PDF eBook
Author Beena Ammanath
Publisher John Wiley & Sons
Pages 230
Release 2022-03-15
Genre Computers
ISBN 1119867959

Download Trustworthy AI Book in PDF, Epub and Kindle

An essential resource on artificial intelligence ethics for business leaders In Trustworthy AI, award-winning executive Beena Ammanath offers a practical approach for enterprise leaders to manage business risk in a world where AI is everywhere by understanding the qualities of trustworthy AI and the essential considerations for its ethical use within the organization and in the marketplace. The author draws from her extensive experience across different industries and sectors in data, analytics and AI, the latest research and case studies, and the pressing questions and concerns business leaders have about the ethics of AI. Filled with deep insights and actionable steps for enabling trust across the entire AI lifecycle, the book presents: In-depth investigations of the key characteristics of trustworthy AI, including transparency, fairness, reliability, privacy, safety, robustness, and more A close look at the potential pitfalls, challenges, and stakeholder concerns that impact trust in AI application Best practices, mechanisms, and governance considerations for embedding AI ethics in business processes and decision making Written to inform executives, managers, and other business leaders, Trustworthy AI breaks new ground as an essential resource for all organizations using AI.

Reshaping CyberSecurity With Generative AI Techniques

Reshaping CyberSecurity With Generative AI Techniques
Title Reshaping CyberSecurity With Generative AI Techniques PDF eBook
Author Jhanjhi, Noor Zaman
Publisher IGI Global
Pages 664
Release 2024-09-13
Genre Computers
ISBN

Download Reshaping CyberSecurity With Generative AI Techniques Book in PDF, Epub and Kindle

The constantly changing digital environment of today makes cybersecurity an ever-increasing concern. With every technological advancement, cyber threats become more sophisticated and easily exploit system vulnerabilities. This unending attack barrage exposes organizations to data breaches, financial losses, and reputational harm. The traditional defense mechanisms, once dependable, now require additional support to keep up with the dynamic nature of modern attacks. Reshaping CyberSecurity With Generative AI Techniques offers a transformative solution to the pressing cybersecurity dilemma by harnessing the power of cutting-edge generative AI technologies. Bridging the gap between artificial intelligence and cybersecurity presents a paradigm shift in defense strategies, empowering organizations to safeguard their digital assets proactively. Through a comprehensive exploration of generative AI techniques, readers gain invaluable insights into how these technologies can be leveraged to mitigate cyber threats, enhance defense capabilities, and reshape the cybersecurity paradigm.