Plasma Waves, 2nd Edition
Title | Plasma Waves, 2nd Edition PDF eBook |
Author | Donald Gary Swanson |
Publisher | CRC Press |
Pages | 960 |
Release | 2003-03-12 |
Genre | Science |
ISBN | 9780750309271 |
Extended and revised, Plasma Waves, 2nd Edition provides essential information on basic formulas and categorizes the various possible types of waves and their interactions. The book includes modern and complete treatments of electron cyclotron emission, collisions, relativistic effects, Landau damping, quasilinear and nonlinear wave theory, and tunneling equations. The broad scope encompasses waves in cold, warm, and hot plasmas and relativistic plasma waves. Special chapters deal with the effects of boundaries, inhomogeneities, and nonlinear effects. The author derives all formulae and describes several fundamental wave experiments, allowing for a greater appreciation of the subject.
Plasma Waves
Title | Plasma Waves PDF eBook |
Author | Donald Gary Swanson |
Publisher | Taylor & Francis |
Pages | 472 |
Release | 2020-07-14 |
Genre | Science |
ISBN | 1420056832 |
Extended and revised, Plasma Waves, 2nd Edition provides essential information on basic formulas and categorizes the various possible types of waves and their interactions. The book includes modern and complete treatments of electron cyclotron emission, collisions, relativistic effects, Landau damping, quasilinear and nonlinear wave theory, and tunneling equations. The broad scope encompasses waves in cold, warm, and hot plasmas and relativistic plasma waves. Special chapters deal with the effects of boundaries, inhomogeneities, and nonlinear effects. The author derives all formulae and describes several fundamental wave experiments, allowing for a greater appreciation of the subject.
Waves and Oscillations in Plasmas
Title | Waves and Oscillations in Plasmas PDF eBook |
Author | Hans L. Pecseli |
Publisher | CRC Press |
Pages | 765 |
Release | 2020-05-05 |
Genre | Science |
ISBN | 042995350X |
Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences, within the context of general classical physics. The book is working gradually from an introductory to an advanced level. Addressing central issues in modern plasma sciences, including linear and nonlinear wave phenomena, this second edition has been fully updated and includes the latest developments in relevant fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping, linear as well as non-linear. The book is the result of many years of lecturing plasma sciences in Norway, Denmark, Germany, and also at the Unites States of America. Offering a clear separation of linear and nonlinear models, the book can be tailored for students of varying levels of expertise in plasma physics, in addition to areas as diverse as the space sciences, laboratory experiments, plasma processing, and more. Features: Presents a simple physical interpretation of basic problems is presented where possible Supplies a complete summary of classical papers and textbooks placed in the proper context Includes worked examples, exercises, and problems with general applicability
Physics of High Temperature Plasmas
Title | Physics of High Temperature Plasmas PDF eBook |
Author | George Schmidt |
Publisher | Elsevier |
Pages | 423 |
Release | 2012-12-02 |
Genre | Science |
ISBN | 0323161766 |
Physics of High Temperature Plasmas, Second Edition focuses on plasma physics and the advances in this field. This book explores the experimental observations on linear waves and instabilities. Comprised of 11 chapters, this edition begins with an overview of heat transition as a result of the heating of a solid or liquid substance. This book then examines the behavior of plasmas, which has great significance for the understanding of our universe. This text also investigates the possible application of plasmas, such as the application of hot plasma as thermonuclear fuel. Other chapters discuss the laws of plasma physics, with emphasis on those phenomena that are relevant to the operation of thermonuclear machines. This text discusses as well the electromagnetic forces on an earthly scale, the quantum effects, particle collisions, and Maxwell's equation. The final chapter of the book deals with the motion of charged particles. This book is intended for researchers engaged in plasma research and graduate students taking a course in plasma physics.
Introduction to Plasma Physics and Controlled Fusion
Title | Introduction to Plasma Physics and Controlled Fusion PDF eBook |
Author | Francis F. Chen |
Publisher | Springer Science & Business Media |
Pages | 427 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 1475755953 |
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
Plasma Antennas, Second Edition
Title | Plasma Antennas, Second Edition PDF eBook |
Author | Theodore Anderson |
Publisher | Artech House |
Pages | 350 |
Release | 2020-11-30 |
Genre | Technology & Engineering |
ISBN | 1630817511 |
This updated edition of an Artech House classic contains steering, focusing, and spreading of antenna beams using the physics of refraction of electromagnetic waves through a plasma. Pulsing circuitry for ionizing plasma antennas with low power requirements are covered. New and improved smart plasma antenna and applications to wi-fi and the applications of plasma antennas are discussed. Experimental work on plasma antenna noise and new progress on ruggedization and custom-made plasma tubes are also presented. This unique resource provides readers with a solid understanding of the efficient design and prototype development of plasma antennas to meet the challenge of reducing the power required to ionize the gas at various plasma densities. Thorough coverage of the technical underpinnings of plasma antennas, as well as important discussions on current markets and applications are discussed. Additionally, the book presents experimental work in this cutting-edge area and reveals the latest developments in the field.
Fusion Plasma Physics
Title | Fusion Plasma Physics PDF eBook |
Author | Weston M. Stacey |
Publisher | John Wiley & Sons |
Pages | 674 |
Release | 2012-10-15 |
Genre | Science |
ISBN | 3527411348 |
This revised and enlarged second edition of the popular textbook and reference contains comprehensive treatments of both the established foundations of magnetic fusion plasma physics and of the newly developing areas of active research. It concludes with a look ahead to fusion power reactors of the future. The well-established topics of fusion plasma physics -- basic plasma phenomena, Coulomb scattering, drifts of charged particles in magnetic and electric fields, plasma confinement by magnetic fields, kinetic and fluid collective plasma theories, plasma equilibria and flux surface geometry, plasma waves and instabilities, classical and neoclassical transport, plasma-materials interactions, radiation, etc. -- are fully developed from first principles through to the computational models employed in modern plasma physics. The new and emerging topics of fusion plasma physics research -- fluctuation-driven plasma transport and gyrokinetic/gyrofluid computational methodology, the physics of the divertor, neutral atom recycling and transport, impurity ion transport, the physics of the plasma edge (diffusive and non-diffusive transport, MARFEs, ELMs, the L-H transition, thermal-radiative instabilities, shear suppression of transport, velocity spin-up), etc. -- are comprehensively developed and related to the experimental evidence. Operational limits on the performance of future fusion reactors are developed from plasma physics and engineering constraints, and conceptual designs of future fusion power reactors are discussed.