Ecological Biochemistry
Title | Ecological Biochemistry PDF eBook |
Author | Gerd-Joachim Krauss |
Publisher | John Wiley & Sons |
Pages | 442 |
Release | 2015-01-12 |
Genre | Science |
ISBN | 3527316507 |
The first stand-alone textbook for at least ten years on this increasingly hot topic in times of global climate change and sustainability in ecosystems. Ecological biochemistry refers to the interaction of organisms with their abiotic environment and other organisms by chemical means. Biotic and abiotic factors determine the biochemical flexibility of organisms, which otherwise easily adapt to environmental changes by altering their metabolism. Sessile plants, in particular, have evolved intricate biochemical response mechanisms to fit into a changing environment. This book covers the chemistry behind these interactions, bottom up from the atomic to the system's level. An introductory part explains the physico-chemical basis and biochemical roots of living cells, leading to secondary metabolites as crucial bridges between organisms and the respective ecosystem. The focus then shifts to the biochemical interactions of plants, fungi and bacteria within terrestrial and aquatic ecosystems with the aim of linking biochemical insights to ecological research, also in human-influenced habitats. A section is devoted to methodology, which allows network-based analyses of molecular processes underlying systems phenomena. A companion website offering an extended version of the introductory chapter on Basic Biochemical Roots is available at http://www.wiley.com/go/Krauss/Nies/EcologicalBiochemistry
Alkaloid Biology and Metabolism in Plants
Title | Alkaloid Biology and Metabolism in Plants PDF eBook |
Author | G. Waller |
Publisher | Springer Science & Business Media |
Pages | 302 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 1468407724 |
* This book is designed for the use of the advanced student and professional worker interested in the international scientific community, particularly those in the fields of agronomy, agricultural sciences, botany, biological sciences, natural products chemistry, pharmaceutical chemistry and bio chemistry. The purpose is to inform the reader about significant advances in the biology and metabolism of alkaloids in plants. Since alkaloids are generally referred to as "secondary metabolites," the reactions discussed are not, for the most part, involved with the main metabolic pathways. The reactions that we are interested in are pathways that have been developed for the formation of these secondary metabolites, using as their starting mole cules one of the compounds produced via a main or primary metabolic path way. The primary metabolic pathways are common to all plants, indeed to most living organisms, whereas the highly specialized branches leading to alkaloid formation are found in only about 10 to 20 % of the known plants. The reason for these diversities in plant metabolism is not clear; however, it seems likely that the formation of highly individualized and specialized pathways resulted as a response to the pressure of natural selection. Nevertheless, the genetic peculiarity that controls alkaloid production has provided many extremely interesting problems for scientists and consti tutes convincing evidence of nature's superior ability in biochemistry.
Plant Metabolism and Biotechnology
Title | Plant Metabolism and Biotechnology PDF eBook |
Author | Hiroshi Ashihara |
Publisher | John Wiley & Sons |
Pages | 424 |
Release | 2010-03-11 |
Genre | Science |
ISBN | 1119993229 |
Various plant metabolites are useful for human life, and the induction and reduction of these metabolites using modern biotechnical technique is of enormous potential important especially in the fields of agriculture and health. Plant Metabolism and Biotechnology describes the biosynthetic pathways of plant metabolites, their function in plants, and some applications for biotechnology. Topics covered include: biosynthesis and metabolism of starch and sugars lipid biosynthesis symbiotic nitrogen fixation sulfur metabolism nucleotide metabolism purine alkaloid metabolism nicotine biosynthesis terpenoid biosynthesis benzylisoquinoline alkaloid biosynthesis monoterpenoid indole alkaloid biosynthesis flavonoid biosynthesis pigment biosynthesis: anthocyanins, betacyanins and carotenoids metabolomics in biotechnology Plant Metabolism and Biotechnology is an essential guide to this important field for researchers and students of biochemistry, plant biology, metabolic engineering, biotechnology, food science, agriculture, and medicine.
Plant Physiology, Development and Metabolism
Title | Plant Physiology, Development and Metabolism PDF eBook |
Author | Satish C. Bhatla |
Publisher | Springer Nature |
Pages | 906 |
Release | 2023-12-04 |
Genre | Science |
ISBN | 9819957362 |
This textbook is second edition of popular textbook of plant physiology and metabolism. The first edition of this book gained noteworthy acceptance (more than 4.9 Million downloads) among graduate and masters level students and faculty world over, with many Universities recommending it as a preferred reading in their syllabi. The second edition provides up to date and latest information on all the topics covered while also including the basic concepts. The text is supported with clear, easy to understand Figures, Tables, Box items, summaries, perspectives, thought-provoking multiple-choice questions, latest references for further reading, glossary and a detailed subject index. Authors have also added a number of key concepts, discoveries in the form of boxed- items in each chapter. Plant physiology deals with understanding the various processes, functioning, growth, development and survival of plants in normal and stressful conditions. The study involves analysis of the above-stated processes at molecular, sub-cellular, cellular, tissue and plant level in relation with its surrounding environment. Plant physiology is an experimental science, and its concepts are very rapidly changing through applications from chemical biology, cytochemical, fluorometric, biochemical and molecular techniques, and metabolomic and proteomic analysis. Consequently, this branch of modern plant biology has experienced significant generation of new information in most areas. The newer concepts so derived are being also rapidly put into applications in crop physiology. Novel molecules, such nanourea, nitric oxide, gaseous signalling molecules like hydrogen sulphide, are rapidly finding significant applications among crop plants. This textbook, therefore, brings forth an inclusive coverage of the field contained in 35 chapters, divided into five major units. It serves as essential reading material for post-graduate and undergraduate students of botany, plant sciences, plant physiology, agriculture, forestry, ecology, soil science, and environmental sciences. This textbook is also of interest to teachers, researchers, scientists, and policymakers.
Plant Specialized Metabolism
Title | Plant Specialized Metabolism PDF eBook |
Author | Gen-ichiro Arimura |
Publisher | CRC Press |
Pages | 292 |
Release | 2016-10-26 |
Genre | Science |
ISBN | 1315353377 |
Recent advances in science have clarified the role of plant specialized metabolites (classically known as plant secondary metabolites), which cannot be considered only bioactive molecules used for human health but also pivotal factors for the global ecosystem. They play major roles in plant life, evolution, and mutualism. To provide the reader a general view of plant specialized metabolites, it is important to consider both the biochemistry and the functional/ecological role of these important compounds. Around 200,000 specialized metabolites are formed by a wide array of plant metabolic pathways from numerous plant taxa and through learning how other species (including human beings) rely on them. Plant Specialized Metabolism: Genomics, Biochemistry, and Biological Functions will provide the reader with special insights into the sophisticated nature of these metabolites and their various and valuable uses based on the most recent findings in science. The field of plant specialized metabolism has witnessed tremendous growth in the past decade. This growth has had a profound impact on multiple disciplines in life science, including biochemistry, metabolism, enzymology, natural product chemistry, medicinal chemistry, chemical ecology, and evolution. It also has yielded valuable knowledge and technology readily applicable in various industries, such as agriculture, horticulture, energy, renewable chemicals, and pharmaceuticals. The book focuses on the molecular background of secondary metabolite biosynthesis, their functional role, and potential applications.
Plant Biochemistry
Title | Plant Biochemistry PDF eBook |
Author | Hans-Walter Heldt |
Publisher | Academic Press |
Pages | 658 |
Release | 2005 |
Genre | Medical |
ISBN | 0120883910 |
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.
Cellular and Subcellular Localization in Plant Metabolism
Title | Cellular and Subcellular Localization in Plant Metabolism PDF eBook |
Author | Leroy L. Creasy |
Publisher | Springer Science & Business Media |
Pages | 281 |
Release | 2013-04-17 |
Genre | Science |
ISBN | 1475747276 |
Morphological differences between cells and the exis tence of morphologically distinct particles have been examined since cells were first recognized. Each techno logical advance in detection and visualization has led to the description of different organelles and cell types. Basic biochemical processes in cells were recognized and are now weIl understood. It is only recently however, that research has expanded to include the specific meta bolic function of the specialized cell types and organelles. In some cases metabolic roles were recognized when the organelles were first described, e.g., chloroplasts, mito chondria, etc., in others the metabolic role remains unknown. Chemical and biochemical specialization in plants or their organelles is equally challenging. Although biochemists have laboured intensivelyon many isolated plant organelles, it is only recently that technical advances have permitted the examination of specialization in the metabolism of cell types. This area of research, although under intensive investigation in some areas of plant metabolism, is still in its infancy. Further developments in methodology or in production of specific genetic lines of plants will greatly improve our understanding of the specialization of different tissues and cell types. This volume describes the current status in the dis cipline as presented in a Symposium on the Cellular and Subcellular Specialization in Plant Metabolism during the Annual Meeting of the Phytochemical Society of North America, at Cornell University, Ithaca, N.Y., on August 10-14, 1981.