Planar Dynamical Systems

Planar Dynamical Systems
Title Planar Dynamical Systems PDF eBook
Author Yirong Liu
Publisher Walter de Gruyter GmbH & Co KG
Pages 464
Release 2014-10-29
Genre Mathematics
ISBN 3110389142

Download Planar Dynamical Systems Book in PDF, Epub and Kindle

In 2008, November 23-28, the workshop of ”Classical Problems on Planar Polynomial Vector Fields ” was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincaré for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert’s 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincaré and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert’s 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.

Oscillations In Planar Dynamic Systems

Oscillations In Planar Dynamic Systems
Title Oscillations In Planar Dynamic Systems PDF eBook
Author Ronald E Mickens
Publisher World Scientific
Pages 340
Release 1996-01-11
Genre Mathematics
ISBN 981450033X

Download Oscillations In Planar Dynamic Systems Book in PDF, Epub and Kindle

This book provides a concise presentation of the major techniques for determining analytic approximations to the solutions of planar oscillatory dynamic systems. These systems model many important phenomena in the sciences and engineering. In addition to the usual perturbation procedures, the book gives the details of when and how to correctly apply the method of harmonic balance for both first-order and higher-order calculations. This procedure is rarely given or discussed fully in standard textbooks. The basic philosophy of the book stresses how to initiate and complete the calculation of approximate solutions. This is done by a clear presentation of necessary background materials and by the working out of many examples.

Qualitative Theory of Planar Differential Systems

Qualitative Theory of Planar Differential Systems
Title Qualitative Theory of Planar Differential Systems PDF eBook
Author Freddy Dumortier
Publisher Springer Science & Business Media
Pages 309
Release 2006-10-13
Genre Mathematics
ISBN 3540329021

Download Qualitative Theory of Planar Differential Systems Book in PDF, Epub and Kindle

This book deals with systems of polynomial autonomous ordinary differential equations in two real variables. The emphasis is mainly qualitative, although attention is also given to more algebraic aspects as a thorough study of the center/focus problem and recent results on integrability. In the last two chapters the performant software tool P4 is introduced. From the start, differential systems are represented by vector fields enabling, in full strength, a dynamical systems approach. All essential notions, including invariant manifolds, normal forms, desingularization of singularities, index theory and limit cycles, are introduced and the main results are proved for smooth systems with the necessary specifications for analytic and polynomial systems.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Differential Equations, Dynamical Systems, and an Introduction to Chaos
Title Differential Equations, Dynamical Systems, and an Introduction to Chaos PDF eBook
Author Morris W. Hirsch
Publisher Academic Press
Pages 433
Release 2004
Genre Business & Economics
ISBN 0123497035

Download Differential Equations, Dynamical Systems, and an Introduction to Chaos Book in PDF, Epub and Kindle

Thirty years in the making, this revised text by three of the world's leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra. The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of.

Differential Equations and Dynamical Systems

Differential Equations and Dynamical Systems
Title Differential Equations and Dynamical Systems PDF eBook
Author Lawrence Perko
Publisher Springer Science & Business Media
Pages 530
Release 2012-12-06
Genre Mathematics
ISBN 1468402498

Download Differential Equations and Dynamical Systems Book in PDF, Epub and Kindle

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.

Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition
Title Differential Dynamical Systems, Revised Edition PDF eBook
Author James D. Meiss
Publisher SIAM
Pages 410
Release 2017-01-24
Genre Mathematics
ISBN 161197464X

Download Differential Dynamical Systems, Revised Edition Book in PDF, Epub and Kindle

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.

Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems
Title Ordinary Differential Equations and Dynamical Systems PDF eBook
Author Gerald Teschl
Publisher American Mathematical Society
Pages 370
Release 2024-01-12
Genre Mathematics
ISBN 147047641X

Download Ordinary Differential Equations and Dynamical Systems Book in PDF, Epub and Kindle

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.