Piezoelectric Nanostructures of Zinc Oxide: Synthesis, Characterization and Devices

Piezoelectric Nanostructures of Zinc Oxide: Synthesis, Characterization and Devices
Title Piezoelectric Nanostructures of Zinc Oxide: Synthesis, Characterization and Devices PDF eBook
Author Puxian Gao
Publisher
Pages
Release 2005
Genre Biosensors
ISBN

Download Piezoelectric Nanostructures of Zinc Oxide: Synthesis, Characterization and Devices Book in PDF, Epub and Kindle

In this thesis, a systematic study has been carried out on the synthesis, characterization and device fabrication of piezoelectric ZnO nanstructures. The achieved results are composed of the following four parts. Firstly, through a systematic investigation on the Sn-catalyzed ZnO nanostructure, an improved understanding of the chemical and physical process occurring during the growth of hierarchical nanostructures has been achieved. Decomposed Sn from SnO2 has been successfully demonstrated and proved to be an effective catalyst guiding the growth of not only aligned ZnO nanowires, but also the hierarchical nanowire-nanoribbon junction arrays and nanopropeller arrays. During the vapor-liquid-solid (VLS) catalyzing growth process at high temperature, Sn in the liquid state has been proved to be able to guide the growth of nanowires and nanoribbons in terms of growth directions, side facets, and crystallographic interfaces between Sn and ZnO nanostructures. Secondly, using pure ZnO as the only source material, by precisely tuning and controlling the growth kinetics, a variety of hierarchical polar surface dominated nanostructures have been achieved, such as single crystal nanorings, nanobows, nanosprings and superlattice nanohelices. High yield synthesis of ZnO nanosprings over 50% has been successfully obtained by mainly controlling the pre-pumping level associated with the partial pressure of residual oxygen during the vapor-solid growth process. The rigid superlattice nanohelices of ZnO have been discovered, which is a result of minimization of the electrostatic energy induced by polar surfaces. The formation process of the nanohelix has been systematically characterized. Thirdly, two new strategies have been successfully developed for fabricating ZnO quantum dots and synthesis of ZnO nanodiskettes and nanotubes. The formation process is based on a common concept of self-assembly. Finally, a series of devices and applications studies based on several piezoelectric ZnO nanostructures, such as nanobelts, nanopropellers and nanohelices, have been carried out utilizing the electro-mechanical resonance, bio-surface functionalization, devices fabrication and electrical characterization. Individual nanobelt and nanohelix based nanodevices have been successfully fabricated for applications in chemical and biological sensing. The study opens a few new areas in oxide nanostructures and applications.

Synthesis and Characterization of Zinc Oxide Nanostructures for Piezoelectric Applications

Synthesis and Characterization of Zinc Oxide Nanostructures for Piezoelectric Applications
Title Synthesis and Characterization of Zinc Oxide Nanostructures for Piezoelectric Applications PDF eBook
Author William L. Hughes
Publisher
Pages 217
Release 2006
Genre
ISBN

Download Synthesis and Characterization of Zinc Oxide Nanostructures for Piezoelectric Applications Book in PDF, Epub and Kindle

Union between top-down and bottom-up assembly is inevitable when scaling down physical, chemical, and biological sensors and probes. Current sensor/probe-based technologies are firmly founded on top-down manufacturing, with limitations in cost of production, manufacturing methods, and material constraints. As an alternative to such limitations, contemporary synthesis techniques for one-dimensional nanostructures have been combined with established methods of micro-fabrication for the development of novel tools and techniques for nanotechnology. More specifically, this dissertation is a systematic study of the synthesis and characterization of ZnO nanostructures for piezoelectric applications. Within this study the following goals have been achieved: (1) rational design and control of a diversity of novel ZnO nanostructures, (2) improved understanding of polar-surface-dominated (PSD) phenomena among Wurtzite crystal structures, (3) confirmation of Tasker's Rule via the synthesis, characterization, and modeling of polar-surface-dominated nanostructures, (4) measurement of the surface-charge density for real polar surfaces of ZnO, (5) confirmation of the electrostatic polar-charge model used to describe polar-surface-dominated phenomena, (6) dispersion of ZnO nanobelts onto the selective layers of surface acoustic wave (SAW) devices for gas sensing applications, (7) manipulation of ZnO nanostructures using an atomic force microscope (AFM) for the development of piezoelectric devices, (8) fabrication of bulk acoustic resonator (BAR) and film bulk acoustic resonator (FBAR) devices based on the integrity of individual ZnO belts, (9) electrical characterization of a ZnO belt BAR device, (10) prediction and confirmation of the electrical response from a BAR device using a one-dimensional Krimholt-Leedom-Matthaei (KLM) model, and (11) development of a finite element model (FEM) to accurately predict the electrical response from ZnO belt BAR and FBAR devices in 3D.

Zinc Oxide Nanostructures: Synthesis and Characterization

Zinc Oxide Nanostructures: Synthesis and Characterization
Title Zinc Oxide Nanostructures: Synthesis and Characterization PDF eBook
Author Sotirios Baskoutas
Publisher MDPI
Pages 303
Release 2018-12-04
Genre Science
ISBN 3038973025

Download Zinc Oxide Nanostructures: Synthesis and Characterization Book in PDF, Epub and Kindle

This book is a printed edition of the Special Issue "Zinc Oxide Nanostructures: Synthesis and Characterization" that was published in Materials

Nanostructured Zinc Oxide

Nanostructured Zinc Oxide
Title Nanostructured Zinc Oxide PDF eBook
Author Kamlendra Awasthi
Publisher Elsevier
Pages 781
Release 2021-08-10
Genre Technology & Engineering
ISBN 0128189010

Download Nanostructured Zinc Oxide Book in PDF, Epub and Kindle

Nanostructured Zinc Oxide covers the various routes for the synthesis of different types of nanostructured zinc oxide including; 1D (nanorods, nanowires etc.), 2D and 3D (nanosheets, nanoparticles, nanospheres etc.). This comprehensive overview provides readers with a clear understanding of the various parameters controlling morphologies. The book also reviews key properties of ZnO including optical, electronic, thermal, piezoelectric and surface properties and techniques in order to tailor key properties. There is a large emphasis in the book on ZnO nanostructures and their role in optoelectronics. ZnO is very interesting and widely investigated material for a number of applications. This book presents up-to-date information about the ZnO nanostructures-based applications such as gas sensing, pH sensing, photocatalysis, antibacterial activity, drug delivery, and electrodes for optoelectronics. - Reviews methods to synthesize, tailor, and characterize 1D, 2D, and 3D zinc oxide nanostructured materials - Discusses key properties of zinc oxide nanostructured materials including optical, electronic, thermal, piezoelectric, and surface properties - Addresses most relevant zinc oxide applications in optoelectronics such as light-emitting diodes, solar cells, and sensors

Synthesis, Characterization and Integration of Piezoelectric Zinc Oxide Nanowires

Synthesis, Characterization and Integration of Piezoelectric Zinc Oxide Nanowires
Title Synthesis, Characterization and Integration of Piezoelectric Zinc Oxide Nanowires PDF eBook
Author Carlos Andres Aguilar
Publisher
Pages 352
Release 2008
Genre Cardiac pacemakers
ISBN

Download Synthesis, Characterization and Integration of Piezoelectric Zinc Oxide Nanowires Book in PDF, Epub and Kindle

An automatic implantable cardiac defibrillator (AICD) is a device that is implanted in the chest to constantly monitor and, if necessary, correct episodes of arrhythmia. While the longevity of the average AICD patient has increased to 10 years after implantation, only 5% of implants functioned for seven years, and this mismatch poses a significant and ever growing clinical and economic burden. Moreover, there are now efforts to "piggyback" devices on AICDs and BVPs for additional functionality, all of which require more power. An innovative approach towards generating power for AICDs is to harness the energy of the heart by embedding energy generators in AICD leads. The cardiovascular system as a source generator is appealing due to its ability to continuously deliver mechanical energy as long as the patient is alive. Herein a device incorporating nanostructured piezoelectrics was developed as a means to harvest the energy of heart. The generator system integrates inorganic piezoelectric nanomaterials, including aligned arrays of nanowires of crystalline zinc oxide (ZnO), with elastomeric substrates. The design combines several innovative structural configurations including a "wavy" flexible electrode and a layout where the nanowires are near or on the neutral mechanical plane. A wet synthetic strategy to reliably prepare piezoelectric ZnO nanostructures directly onto the devices was also developed and optimized to produce nanowires with high densities, large aspect ratios and high orientation. The elastomeric support permits direct integration within AICD leads and is small and flexible enough to not add resistance in systole. The flexible devices were integrated into a testbed mimicking the input a failing right ventricle and the results demonstrate progress towards energy harvesting from the cardiovascular system. A model was developed to gain insight as to how to structure the nanowire array within the latitude of the synthesis to boost the energy production. To further improve the output, the nanowires were passivated with dipolar molecules to change their resistivities and the barrier height of the Schottky contact. A novel low photon energy photoelectron spectroscopy tool was developed to measure the effects of the molecules on the individual nanowire properties. This concept of using nanostructured piezoelectrics as a means to convert the energy of the body may in the coming years represent a paradigm shift from battery dependant AICD modules to completely autonomous functional systems.

Zinc Oxide Based Nano Materials and Devices

Zinc Oxide Based Nano Materials and Devices
Title Zinc Oxide Based Nano Materials and Devices PDF eBook
Author , Prof. Dr. Ahmed Nahhas
Publisher BoD – Books on Demand
Pages 148
Release 2019-10-09
Genre Technology & Engineering
ISBN 1789239575

Download Zinc Oxide Based Nano Materials and Devices Book in PDF, Epub and Kindle

This book presents a review of recent advances in ZnO-based nanomaterials and devices. ZnO as a nanomaterial has gained substantial interest in the research area of wide bandgap semiconductors and is considered to be one of the major candidates for electronic and photonic applications. ZnO has distinguished and interesting electrical and optical properties and is considered to be a potential material in optoelectronic applications such as solar cells, surface acoustic wave devices, and UV emitters. ZnO's unique properties have attracted several researchers to study its electrical and optical properties. As a nanostructured material, ZnO exhibits many advantages for nanodevices. Moreover, it has the ability to absorb the UV radiation.

Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing

Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing
Title Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing PDF eBook
Author Ren Zhu
Publisher Springer
Pages 77
Release 2018-02-13
Genre Technology & Engineering
ISBN 3319700383

Download Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing Book in PDF, Epub and Kindle

This book explores the new materials and the resultant new field of piezotronics. The growth and alignment of the zinc oxide nanostructures are discussed in detail because of its wide adoption in this field and its significance in optics, health, and sensing applications. The characterization of the piezotronic effect and how to distinguish it from other similar but, fundamentally different effects, like piezoresistive effect is also considered. The huge potential in the wearable and flexible devices, as well as organic materials, is further examined. The stain/stress sensing is introduced as an example of an application with piezotronic materials.