Piecewise Linear Structures On Topological Manifolds

Piecewise Linear Structures On Topological Manifolds
Title Piecewise Linear Structures On Topological Manifolds PDF eBook
Author Yuli Rudyak
Publisher World Scientific
Pages 129
Release 2015-12-28
Genre Mathematics
ISBN 9814733806

Download Piecewise Linear Structures On Topological Manifolds Book in PDF, Epub and Kindle

The study of triangulations of topological spaces has always been at the root of geometric topology. Among the most studied triangulations are piecewise linear triangulations of high-dimensional topological manifolds. Their study culminated in the late 1960s-early 1970s in a complete classification in the work of Kirby and Siebenmann. It is this classification that we discuss in this book, including the celebrated Hauptvermutung and Triangulation Conjecture.The goal of this book is to provide a readable and well-organized exposition of the subject, which would be suitable for advanced graduate students in topology. An exposition like this is currently lacking.

Piecewise Linear Topology

Piecewise Linear Topology
Title Piecewise Linear Topology PDF eBook
Author John F. P. Hudson
Publisher
Pages 304
Release 1969
Genre Piecewise linear topology
ISBN

Download Piecewise Linear Topology Book in PDF, Epub and Kindle

Foundational Essays on Topological Manifolds, Smoothings, and Triangulations

Foundational Essays on Topological Manifolds, Smoothings, and Triangulations
Title Foundational Essays on Topological Manifolds, Smoothings, and Triangulations PDF eBook
Author Robion C. Kirby
Publisher Princeton University Press
Pages 376
Release 1977-05-21
Genre Mathematics
ISBN 9780691081915

Download Foundational Essays on Topological Manifolds, Smoothings, and Triangulations Book in PDF, Epub and Kindle

Since Poincaré's time, topologists have been most concerned with three species of manifold. The most primitive of these--the TOP manifolds--remained rather mysterious until 1968, when Kirby discovered his now famous torus unfurling device. A period of rapid progress with TOP manifolds ensued, including, in 1969, Siebenmann's refutation of the Hauptvermutung and the Triangulation Conjecture. Here is the first connected account of Kirby's and Siebenmann's basic research in this area. The five sections of this book are introduced by three articles by the authors that initially appeared between 1968 and 1970. Appendices provide a full discussion of the classification of homotopy tori, including Casson's unpublished work and a consideration of periodicity in topological surgery.

Smoothings of Piecewise Linear Manifolds

Smoothings of Piecewise Linear Manifolds
Title Smoothings of Piecewise Linear Manifolds PDF eBook
Author Morris W. Hirsch
Publisher Princeton University Press
Pages 152
Release 1974-10-21
Genre Mathematics
ISBN 9780691081458

Download Smoothings of Piecewise Linear Manifolds Book in PDF, Epub and Kindle

The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology. Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology. The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.

Piecewise Linear Structures on Topological Manifolds

Piecewise Linear Structures on Topological Manifolds
Title Piecewise Linear Structures on Topological Manifolds PDF eBook
Author
Publisher
Pages 72
Release 2001
Genre
ISBN

Download Piecewise Linear Structures on Topological Manifolds Book in PDF, Epub and Kindle

The Hauptvermutung Book

The Hauptvermutung Book
Title The Hauptvermutung Book PDF eBook
Author A.A. Ranicki
Publisher Springer Science & Business Media
Pages 192
Release 2013-03-09
Genre Mathematics
ISBN 9401733430

Download The Hauptvermutung Book Book in PDF, Epub and Kindle

The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc.

Geometric Topology in Dimensions 2 and 3

Geometric Topology in Dimensions 2 and 3
Title Geometric Topology in Dimensions 2 and 3 PDF eBook
Author E.E. Moise
Publisher Springer Science & Business Media
Pages 272
Release 2013-06-29
Genre Mathematics
ISBN 1461299063

Download Geometric Topology in Dimensions 2 and 3 Book in PDF, Epub and Kindle

Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.