Quantum Computing

Quantum Computing
Title Quantum Computing PDF eBook
Author Mikio Nakahara
Publisher CRC Press
Pages 439
Release 2008-03-11
Genre Mathematics
ISBN 1420012290

Download Quantum Computing Book in PDF, Epub and Kindle

Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect

Physical Realizations of Quantum Computing

Physical Realizations of Quantum Computing
Title Physical Realizations of Quantum Computing PDF eBook
Author Mikio Nakahara
Publisher World Scientific
Pages 252
Release 2006
Genre Computers
ISBN 981277470X

Download Physical Realizations of Quantum Computing Book in PDF, Epub and Kindle

The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of research in the shortest possible time. Sample Chapter(s). Chapter 1: DiVincenzo Criteria and Beyond (537 KB). Contents: DiVincenzo Criteria and Beyond (M M Salomaa & M Nakahara); Single-Electron Charge and Spin Qubit in Semiconductor Quantum Dots (T Fujisawa); Superconducting Quantum Computing: Status and Prospects (F K Wilhelm & K Semba); Controlling Three Atomic Qubits (H Hnffer et al.); Liquid-State NMR Quantum Computer: Hamiltonian Formalism and Experiments (Y Kondo et al.); Optical Quantum Computation (K Nemoto & W J Munro). Readership: Graduates students and researchers in physics."

Quantum Computing

Quantum Computing
Title Quantum Computing PDF eBook
Author National Academies of Sciences, Engineering, and Medicine
Publisher National Academies Press
Pages 273
Release 2019-04-27
Genre Computers
ISBN 030947969X

Download Quantum Computing Book in PDF, Epub and Kindle

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.

Physical Realizations Of Quantum Computing: Are The Divincenzo Criteria Fulfilled In 2004? (With Cd-rom)

Physical Realizations Of Quantum Computing: Are The Divincenzo Criteria Fulfilled In 2004? (With Cd-rom)
Title Physical Realizations Of Quantum Computing: Are The Divincenzo Criteria Fulfilled In 2004? (With Cd-rom) PDF eBook
Author Mikio Nakahara
Publisher World Scientific
Pages 249
Release 2006-03-09
Genre Science
ISBN 9814479462

Download Physical Realizations Of Quantum Computing: Are The Divincenzo Criteria Fulfilled In 2004? (With Cd-rom) Book in PDF, Epub and Kindle

The contributors of this volume are working at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots, and trapped ions. There are also some theoretical contributions which have relevance in the physical realizations of a quantum computer. This book fills the gap between elementary introductions to the subject and highly specialized research papers to allow beginning graduate students to understand the cutting-edge of research in the shortest possible time.

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information
Title Quantum Computation and Quantum Information PDF eBook
Author Michael A. Nielsen
Publisher Cambridge University Press
Pages 709
Release 2010-12-09
Genre Science
ISBN 1139495488

Download Quantum Computation and Quantum Information Book in PDF, Epub and Kindle

One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Quantum Information Processing and Quantum Error Correction

Quantum Information Processing and Quantum Error Correction
Title Quantum Information Processing and Quantum Error Correction PDF eBook
Author Ivan Djordjevic
Publisher Academic Press
Pages 597
Release 2012-04-16
Genre Computers
ISBN 0123854911

Download Quantum Information Processing and Quantum Error Correction Book in PDF, Epub and Kindle

Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits

Introduction to Quantum Computers

Introduction to Quantum Computers
Title Introduction to Quantum Computers PDF eBook
Author Gennady P. Berman
Publisher World Scientific
Pages 200
Release 1998
Genre Computers
ISBN 9789810235499

Download Introduction to Quantum Computers Book in PDF, Epub and Kindle

Quantum computing promises to solve problems which are intractable on digital computers. Highly parallel quantum algorithms can decrease the computational time for some problems by many orders of magnitude. This important book explains how quantum computers can do these amazing things. Several algorithms are illustrated: the discrete Fourier transform, Shor's algorithm for prime factorization; algorithms for quantum logic gates; physical implementations of quantum logic gates in ion traps and in spin chains; the simplest schemes for quantum error correction; correction of errors caused by imperfect resonant pulses; correction of errors caused by the nonresonant actions of a pulse; and numerical simulations of dynamical behavior of the quantum Control-Not gate. An overview of some basic elements of computer science is presented, including the Turing machine, Boolean algebra, and logic gates. The required quantum ideas are explained.