Photonic Crystals and Light Localization in the 21st Century
Title | Photonic Crystals and Light Localization in the 21st Century PDF eBook |
Author | C.M. Soukoulis |
Publisher | Springer Science & Business Media |
Pages | 596 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401007381 |
This volume contains papers presented at the NATO Advanced Study Institute (ASI) Photonic Crystals and Light Localization held at the Creta Maris Hotel in Limin Hersonissou, Crete, June 18-30, 2000. Photonic crystals offer unique ways to tailor light and the propagation of electromagnetic waves (EM). In analogy to electrons in a crystal, EM waves propagating in a structure with a periodically modulated dielectric constant are organized into photonic bands, separated by gaps where propagating states are forbidden. There have been proposals for novel applications ofthese photonic band gap (PBG) crystals, with operating frequencies ranging from microwave to the optical regime, that include zero threshold lasers, low-loss resonators and cavities, and efficient microwave antennas. Spontaneous emission, suppressed for photons in the photonic band gap, offers novel approaches to manipulate the EM field and create high-efficiency light-emitting structures. Innovative ways to manipulate light can have a profound iofluence on science and technology.
Metamaterials
Title | Metamaterials PDF eBook |
Author | Nader Engheta |
Publisher | John Wiley & Sons |
Pages | 438 |
Release | 2006-06-23 |
Genre | Technology & Engineering |
ISBN | 0471784184 |
Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.
Electromagnetic Theory and Applications for Photonic Crystals
Title | Electromagnetic Theory and Applications for Photonic Crystals PDF eBook |
Author | Kiyotoshi Yasumoto |
Publisher | CRC Press |
Pages | 414 |
Release | 2018-10-03 |
Genre | Science |
ISBN | 1351836994 |
Photonic technology promises much faster computing, massive parallel processing, and an evolutionary step in the digital age. The search continues for devices that will enable this paradigm, and these devices will be based on photonic crystals. Modeling is a key process in developing crystals with the desired characteristics and performance, and Electromagnetic Theory and Applications for Photonic Crystals provides the electromagnetic-theoretical models that can be effectively applied to modeling photonic crystals and related optical devices. The book supplies eight self-contained chapters that detail various analytical, numerical, and computational approaches to the modeling of scattering and guiding problems. For each model, the chapter begins with a brief introduction, detailed formulations of periodic structures and photonic crystals, and practical applications to photonic crystal devices. Expert contributors discuss the scattering matrix method, multipole theory of scattering and propagation, model of layered periodic arrays for photonic crystals, the multiple multipole program, the mode-matching method for periodic metallic structures, the method of lines, the finite-difference frequency-domain technique, and the finite-difference time-domain technique. Based on original research and application efforts, Electromagnetic Theory and Applications for Photonic Crystals supplies a broad array of practical tools for analyzing and designing devices that will form the basis for a new age in computing.
Photonic Crystals
Title | Photonic Crystals PDF eBook |
Author | Jean-Michel Lourtioz |
Publisher | Springer Science & Business Media |
Pages | 430 |
Release | 2006-11-22 |
Genre | Science |
ISBN | 3540277013 |
Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends to provide students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building bridges between optics, electromagnetism and solid-state physics. This book was written by six specialists of nanophotonics, and was coordinated by Jean-Michel Lourtioz, head of the Institut d'Électronique Fondamentale in Orsay and coordinator of the French Research Network in Nanophotonics.
Roadmap on Photonic Crystals
Title | Roadmap on Photonic Crystals PDF eBook |
Author | Susumu Noda |
Publisher | Springer Science & Business Media |
Pages | 259 |
Release | 2013-03-14 |
Genre | Science |
ISBN | 1475737165 |
Photonic Crystals are the newest types of optical material being developed for commercial applications in industry. They are likely to provide an exciting new tool for the manipulations of photons and have received the attention of both academia and industry. Roadmap on Photonic Crystals gives a detailed explanation of the background of photonic crystals, the theories behind them, numerical simulations, crystal structures, fabrication processes, evaluation methods and proposed applications. This also includes a roadmap addressing future development and applications. Industrial scientists, post-doctoral researchers and graduate students will find Roadmap on Photonic Crystals a useful tool in the understanding of the critical aspects of photonic crystals.
Optical Fiber Telecommunications VA
Title | Optical Fiber Telecommunications VA PDF eBook |
Author | Ivan Kaminow |
Publisher | Academic Press |
Pages | 945 |
Release | 2010-07-28 |
Genre | Technology & Engineering |
ISBN | 0080565018 |
Optical Fiber Telecommunications V (A&B) is the fifth in a series that has chronicled the progress in the research and development of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition not only brings a fresh look to many essential topics but also focuses on network management and services. Using high bandwidth in a cost-effective manner for the development of customer applications is a central theme. This book is ideal for R&D engineers and managers, optical systems implementers, university researchers and students, network operators, and the investment community. Volume (A) is devoted to components and subsystems, including: semiconductor lasers, modulators, photodetectors, integrated photonic circuits, photonic crystals, specialty fibers, polarization-mode dispersion, electronic signal processing, MEMS, nonlinear optical signal processing, and quantum information technologies. Volume (B) is devoted to systems and networks, including: advanced modulation formats, coherent systems, time-multiplexed systems, performance monitoring, reconfigurable add-drop multiplexers, Ethernet technologies, broadband access and services, metro networks, long-haul transmission, optical switching, microwave photonics, computer interconnections, and simulation tools. Biographical Sketches Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He conducted seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers (DBR , ridge-waveguide InGaAsP and multi-frequency), birefringent optical fibers, and WDM networks. Later, he led research on WDM components (EDFAs, AWGs and fiber Fabry-Perot Filters), and on WDM local and wide area networks. He is a member of the National Academy of Engineering and a recipient of the IEEE/OSA John Tyndall, OSA Charles Townes and IEEE/LEOS Quantum Electronics Awards. Since 2004, he has been Adjunct Professor of Electrical Engineering at the University of California, Berkeley. Tingye Li retired from AT&T in 1998 after a 41-year career at Bell Labs and AT&T Labs. His seminal work on laser resonator modes is considered a classic. Since the late 1960s, He and his groups have conducted pioneering studies on lightwave technologies and systems. He led the work on amplified WDM transmission systems and championed their deployment for upgrading network capacity. He is a member of the National Academy of Engineering and a foreign member of the Chinese Academy of Engineering. He is a recipient of the IEEE David Sarnoff Award, IEEE/OSA John Tyndall Award, OSA Ives Medal/Quinn Endowment, AT&T Science and Technology Medal, and IEEE Photonics Award. Alan Willner has worked at AT&T Bell Labs and Bellcore, and he is Professor of Electrical Engineering at the University of Southern California. He received the NSF Presidential Faculty Fellows Award from the White House, Packard Foundation Fellowship, NSF National Young Investigator Award, Fulbright Foundation Senior Scholar, IEEE LEOS Distinguished Lecturer, and USC University-Wide Award for Excellence in Teaching. He is a Fellow of IEEE and OSA, and he has been President of the IEEE LEOS, Editor-in-Chief of the IEEE/OSA J. of Lightwave Technology, Editor-in-Chief of Optics Letters, Co-Chair of the OSA Science & Engineering Council, and General Co-Chair of the Conference on Lasers and Electro-Optics. For nearly three decades, the OFT series has served as the comprehensive primary resource covering progress in the science and technology of optical fiber telecom. It has been essential for the bookshelves of scientists and engineers active in the field. OFT V provides updates on considerable progress in established disciplines, as well as introductions to new topics. [OFT V]... generates a value that is even higher than that of the sum of its chapters.
Optical Fiber Telecommunications VA
Title | Optical Fiber Telecommunications VA PDF eBook |
Author | Tingye Li |
Publisher | Elsevier |
Pages | 945 |
Release | 2010-07-28 |
Genre | Technology & Engineering |
ISBN | 0080569617 |
Optical Fiber Telecommunications V (A&B) is the fifth in a series that has chronicled the progress in the research and development of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition not only brings a fresh look to many essential topics but also focuses on network management and services. Using high bandwidth in a cost-effective manner for the development of customer applications is a central theme. This book is ideal for R&D engineers and managers, optical systems implementers, university researchers and students, network operators, and the investment community. Volume (A) is devoted to components and subsystems, including: semiconductor lasers, modulators, photodetectors, integrated photonic circuits, photonic crystals, specialty fibers, polarization-mode dispersion, electronic signal processing, MEMS, nonlinear optical signal processing, and quantum information technologies. Volume (B) is devoted to systems and networks, including: advanced modulation formats, coherent systems, time-multiplexed systems, performance monitoring, reconfigurable add-drop multiplexers, Ethernet technologies, broadband access and services, metro networks, long-haul transmission, optical switching, microwave photonics, computer interconnections, and simulation tools. Biographical Sketches Ivan Kaminow retired from Bell Labs in 1996 after a 42-year career. He conducted seminal studies on electrooptic modulators and materials, Raman scattering in ferroelectrics, integrated optics, semiconductor lasers (DBR , ridge-waveguide InGaAsP and multi-frequency), birefringent optical fibers, and WDM networks. Later, he led research on WDM components (EDFAs, AWGs and fiber Fabry-Perot Filters), and on WDM local and wide area networks. He is a member of the National Academy of Engineering and a recipient of the IEEE/OSA John Tyndall, OSA Charles Townes and IEEE/LEOS Quantum Electronics Awards. Since 2004, he has been Adjunct Professor of Electrical Engineering at the University of California, Berkeley. Tingye Li retired from AT&T in 1998 after a 41-year career at Bell Labs and AT&T Labs. His seminal work on laser resonator modes is considered a classic. Since the late 1960s, He and his groups have conducted pioneering studies on lightwave technologies and systems. He led the work on amplified WDM transmission systems and championed their deployment for upgrading network capacity. He is a member of the National Academy of Engineering and a foreign member of the Chinese Academy of Engineering. He is a recipient of the IEEE David Sarnoff Award, IEEE/OSA John Tyndall Award, OSA Ives Medal/Quinn Endowment, AT&T Science and Technology Medal, and IEEE Photonics Award. Alan Willner has worked at AT&T Bell Labs and Bellcore, and he is Professor of Electrical Engineering at the University of Southern California. He received the NSF Presidential Faculty Fellows Award from the White House, Packard Foundation Fellowship, NSF National Young Investigator Award, Fulbright Foundation Senior Scholar, IEEE LEOS Distinguished Lecturer, and USC University-Wide Award for Excellence in Teaching. He is a Fellow of IEEE and OSA, and he has been President of the IEEE LEOS, Editor-in-Chief of the IEEE/OSA J. of Lightwave Technology, Editor-in-Chief of Optics Letters, Co-Chair of the OSA Science & Engineering Council, and General Co-Chair of the Conference on Lasers and Electro-Optics.