Two-dimensional Materials

Two-dimensional Materials
Title Two-dimensional Materials PDF eBook
Author Pramoda Kumar Nayak
Publisher BoD – Books on Demand
Pages 282
Release 2016-08-31
Genre Technology & Engineering
ISBN 9535125540

Download Two-dimensional Materials Book in PDF, Epub and Kindle

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Calculation and Design of Two-dimensional Thermoelectric and Piezoelectric Materials

Calculation and Design of Two-dimensional Thermoelectric and Piezoelectric Materials
Title Calculation and Design of Two-dimensional Thermoelectric and Piezoelectric Materials PDF eBook
Author San-Dong Guo
Publisher Frontiers Media SA
Pages 114
Release 2023-08-25
Genre Science
ISBN 2832531636

Download Calculation and Design of Two-dimensional Thermoelectric and Piezoelectric Materials Book in PDF, Epub and Kindle

The fascinating two-dimensional (2D) materials are being unconsciously applied in various fields from science to engineering, which is benefited from the glamorous physical and chemical properties of mechanics, optics, electronics, and magnetism. The representative 2D thermoelectric/piezoelectric materials can directly convert thermal/mechanical energy into electrical energy, which can resolve the energy issues and avoid further environmental deterioration. The thermoelectric or piezoelectric properties of various 2D materials, such as graphene, hexagonal boron nitride, black phosphorus, transition metal dichalcogenides (TMDs), arsenene, metal carbides and nitrides (MXenes), and so on, have been investigated in detail. Although tremendous progress has been achieved in the past few years, these properties still need to be improved for their practical application by designing new 2D materials, strain engineering, chemical functionalization, etc. In addition to this, in 2D materials, there are many other novel physical properties, such as magnetism, topology, valley, and so on. The combination of thermoelectricity/piezoelectricity with other unique properties may lead to novel device applications or scientific breakthroughs in new physics. Overall, the emergence of 2D thermoelectric and piezoelectric materials has expanded energy conversion research dramatically. By combing this new device concept with the novel 2D materials, original devices should have potential applications in energy harvesting.

Modeling, Characterization, and Production of Nanomaterials

Modeling, Characterization, and Production of Nanomaterials
Title Modeling, Characterization, and Production of Nanomaterials PDF eBook
Author Vinod Tewary
Publisher Woodhead Publishing
Pages 628
Release 2022-11-09
Genre Technology & Engineering
ISBN 0128199199

Download Modeling, Characterization, and Production of Nanomaterials Book in PDF, Epub and Kindle

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green's function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. - Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures - Focuses on practical applications and industry needs through a solid outlining of the theoretical background - Includes emerging nanomaterials and their applications in spintronics and sensing

The Physics of Phonons

The Physics of Phonons
Title The Physics of Phonons PDF eBook
Author Gyaneshwar P. Srivastava
Publisher Routledge
Pages 438
Release 2019-07-16
Genre Science
ISBN 1351409557

Download The Physics of Phonons Book in PDF, Epub and Kindle

There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.

Nanoscale Energy Transport and Conversion

Nanoscale Energy Transport and Conversion
Title Nanoscale Energy Transport and Conversion PDF eBook
Author Gang Chen
Publisher Oxford University Press
Pages 570
Release 2005-03-03
Genre Science
ISBN 9780199774685

Download Nanoscale Energy Transport and Conversion Book in PDF, Epub and Kindle

This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Micro and Nano Thermal Transport

Micro and Nano Thermal Transport
Title Micro and Nano Thermal Transport PDF eBook
Author Lin Qiu
Publisher Academic Press
Pages 358
Release 2022-02-09
Genre Technology & Engineering
ISBN 012823623X

Download Micro and Nano Thermal Transport Book in PDF, Epub and Kindle

Micro and Nano Thermal Transport Research: Characterization, Measurement and Mechanism is a complete and reliable reference on thermal measurement methods and mechanisms of micro and nanoscale materials. The book has a strong focus on applications and simulation, providing clear guidance on how to measure thermal properties in a systematic way. Sections cover the fundamentals of thermal properties before introducing tools to help readers identify and analyze thermal characteristics of these materials. The thermal transport properties are then further explored by means of simulation which reflect the internal mechanisms used to generate such thermal properties. Readers will gain a clear understanding of thermophysical measurement methods and the representative thermal transport characteristics of micro/nanoscale materials with different structures and are guided through a decision-making process to choose the most effective method to master thermal analysis. The book is particularly suitable for those engaged in the design and development of thermal property measurement instruments, as well as researchers of thermal transport at the micro and nanoscale. - Includes a variety of measurement methods and thermal transport characteristics of micro and nanoscale materials under different structures - Guides the reader through the decision-making process to ensure the best thermal analysis method is selected for their setting - Contains experiments and simulations throughout that help apply understanding to practice

Thermal Transport in Semiconductors

Thermal Transport in Semiconductors
Title Thermal Transport in Semiconductors PDF eBook
Author Pol Torres Alvarez
Publisher Springer
Pages 171
Release 2018-06-28
Genre Technology & Engineering
ISBN 3319949837

Download Thermal Transport in Semiconductors Book in PDF, Epub and Kindle

Starting from a broad overview of heat transport based on the Boltzmann Transport Equation, this book presents a comprehensive analysis of heat transport in bulk and nanomaterials based on a kinetic-collective model (KCM). This has become key to understanding the field of thermal transport in semiconductors, and represents an important stride. The book describes how heat transport becomes hydrodynamic at the nanoscale, propagating very much like a viscous fluid and manifesting vorticity and friction-like behavior. It introduces a generalization of Fourier’s law including a hydrodynamic term based on collective behavior in the phonon ensemble. This approach makes it possible to describe in a unifying way recent experiments that had to resort to unphysical assumptions in order to uphold the validity of Fourier’s law, demonstrating that hydrodynamic heat transport is a pervasive type of behavior in semiconductors at reduced scales.