Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology

Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology
Title Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology PDF eBook
Author Stephan Mescher
Publisher Springer
Pages 190
Release 2018-04-25
Genre Mathematics
ISBN 3319765841

Download Perturbed Gradient Flow Trees and A∞-algebra Structures in Morse Cohomology Book in PDF, Epub and Kindle

This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.

Mathematical Reviews

Mathematical Reviews
Title Mathematical Reviews PDF eBook
Author
Publisher
Pages 868
Release 2007
Genre Mathematics
ISBN

Download Mathematical Reviews Book in PDF, Epub and Kindle

Contact and Symplectic Topology

Contact and Symplectic Topology
Title Contact and Symplectic Topology PDF eBook
Author Frédéric Bourgeois
Publisher Springer Science & Business Media
Pages 538
Release 2014-03-10
Genre Science
ISBN 3319020366

Download Contact and Symplectic Topology Book in PDF, Epub and Kindle

Symplectic and contact geometry naturally emerged from the mathematical description of classical physics. The discovery of new rigidity phenomena and properties satisfied by these geometric structures launched a new research field worldwide. The intense activity of many European research groups in this field is reflected by the ESF Research Networking Programme "Contact And Symplectic Topology" (CAST). The lectures of the Summer School in Nantes (June 2011) and of the CAST Summer School in Budapest (July 2012) provide a nice panorama of many aspects of the present status of contact and symplectic topology. The notes of the minicourses offer a gentle introduction to topics which have developed in an amazing speed in the recent past. These topics include 3-dimensional and higher dimensional contact topology, Fukaya categories, asymptotically holomorphic methods in contact topology, bordered Floer homology, embedded contact homology, and flexibility results for Stein manifolds.

Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds
Title Foliations and the Geometry of 3-Manifolds PDF eBook
Author Danny Calegari
Publisher Oxford University Press on Demand
Pages 378
Release 2007-05-17
Genre Mathematics
ISBN 0198570082

Download Foliations and the Geometry of 3-Manifolds Book in PDF, Epub and Kindle

This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.

Computational Topology for Data Analysis

Computational Topology for Data Analysis
Title Computational Topology for Data Analysis PDF eBook
Author Tamal Krishna Dey
Publisher Cambridge University Press
Pages 456
Release 2022-03-10
Genre Mathematics
ISBN 1009103199

Download Computational Topology for Data Analysis Book in PDF, Epub and Kindle

Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Symplectic and Contact Topology: Interactions and Perspectives

Symplectic and Contact Topology: Interactions and Perspectives
Title Symplectic and Contact Topology: Interactions and Perspectives PDF eBook
Author Y. Eliashberg
Publisher American Mathematical Soc.
Pages 210
Release 2003
Genre Mathematics
ISBN 0821831623

Download Symplectic and Contact Topology: Interactions and Perspectives Book in PDF, Epub and Kindle

The papers presented in this volume are written by participants of the ``Symplectic and Contact Topology, Quantum Cohomology, and Symplectic Field Theory'' symposium. The workshop was part of a semester-long joint venture of The Fields Institute in Toronto and the Centre de Recherches Mathematiques in Montreal. The twelve papers cover the following topics: Symplectic Topology, the interaction between symplectic and other geometric structures, and Differential Geometry and Topology. The Proceeding concludes with two papers that have a more algebraic character. One is related to the program of Homological Mirror Symmetry: the author defines a category of extended complex manifolds and studies its properties. The subject of the final paper is Non-commutative Symplectic Geometry, in particular the structure of the symplectomorphism group of a non-commutative complex plane. The in-depth articles make this book a useful reference for graduate students as well as research mathematicians.

$J$-Holomorphic Curves and Quantum Cohomology

$J$-Holomorphic Curves and Quantum Cohomology
Title $J$-Holomorphic Curves and Quantum Cohomology PDF eBook
Author Dusa McDuff
Publisher American Mathematical Soc.
Pages 220
Release 1994
Genre Mathematics
ISBN 0821803328

Download $J$-Holomorphic Curves and Quantum Cohomology Book in PDF, Epub and Kindle

J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.