Perturbative Algebraic Quantum Field Theory
Title | Perturbative Algebraic Quantum Field Theory PDF eBook |
Author | Kasia Rejzner |
Publisher | Springer |
Pages | 186 |
Release | 2016-03-16 |
Genre | Science |
ISBN | 3319259016 |
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
Thermal Quantum Field Theory: Algebraic Aspects And Applications
Title | Thermal Quantum Field Theory: Algebraic Aspects And Applications PDF eBook |
Author | Faqir C Khanna |
Publisher | World Scientific |
Pages | 482 |
Release | 2009-02-06 |
Genre | Science |
ISBN | 9814470732 |
This monograph presents recent developments in quantum field theory at finite temperature. By using Lie groups, ideas from thermal theory are considered with concepts of symmetry, allowing for applications not only to quantum field theory but also to transport theory, quantum optics and statistical mechanics. This includes an analysis of geometrical and topological aspects of spatially confined systems with applications to the Casimir effect, superconductivity and phase transitions. Finally, some developments in open systems are also considered. The book provides a unified picture of the fundamental aspects in thermal quantum field theory and their applications, and is important to the field as a result, since it combines several diverse ideas that lead to a better understanding of different areas of physics.
Advances in Algebraic Quantum Field Theory
Title | Advances in Algebraic Quantum Field Theory PDF eBook |
Author | Romeo Brunetti |
Publisher | Springer |
Pages | 460 |
Release | 2015-09-04 |
Genre | Science |
ISBN | 3319213539 |
This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.
Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics
Title | Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics PDF eBook |
Author | Peter Millington |
Publisher | Springer Science & Business Media |
Pages | 220 |
Release | 2013-10-29 |
Genre | Science |
ISBN | 3319011863 |
The author develops a new perturbative formalism of non-equilibrium thermal quantum field theory for non-homogeneous backgrounds. As a result of this formulation, the author is able to show how so-called pinch singularities can be removed, without resorting to ad hoc prescriptions, or effective resummations of absorptive effects. Thus, the author arrives at a diagrammatic approach to non-equilibrium field theory, built from modified Feynman rules that are manifestly time-dependent from tree level. This new formulation provides an alternative framework in which to derive master time evolution equations for physically meaningful particle number densities, which are valid to all orders in perturbation theory and to all orders in gradient expansion. Once truncated in a loop-wise sense, these evolution equations capture non-equilibrium dynamics on all time-scales, systematically describing energy-violating processes and the non-Markovian evolution of memory effects
Basics of Thermal Field Theory
Title | Basics of Thermal Field Theory PDF eBook |
Author | Mikko Laine |
Publisher | Springer |
Pages | 288 |
Release | 2016-06-09 |
Genre | Science |
ISBN | 3319319337 |
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from the study of phase transitions and particle production rate computations, to the concept of transport and damping coefficients that play a ubiquitous role in current developments. The book serves as a self-contained textbook on relativistic thermal field theory for undergraduate and graduate students of theoretical high-energy physics.
Non-Perturbative Field Theory
Title | Non-Perturbative Field Theory PDF eBook |
Author | Yitzhak Frishman |
Publisher | Cambridge University Press |
Pages | 455 |
Release | 2010-04-08 |
Genre | Science |
ISBN | 1139486489 |
Providing a new perspective on quantum field theory, this book is useful for graduate students and researchers within and outside the field. It describes non-perturbative methods, and explores two-dimensional and four-dimensional gauge dynamics using those methods. Applications are thoroughly described.
Noncommutative Geometry, Quantum Fields and Motives
Title | Noncommutative Geometry, Quantum Fields and Motives PDF eBook |
Author | Alain Connes |
Publisher | American Mathematical Soc. |
Pages | 810 |
Release | 2019-03-13 |
Genre | Mathematics |
ISBN | 1470450453 |
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.