Percolation Theory for Flow in Porous Media
Title | Percolation Theory for Flow in Porous Media PDF eBook |
Author | Allen Hunt |
Publisher | Springer Science & Business Media |
Pages | 334 |
Release | 2009-05-05 |
Genre | Science |
ISBN | 3540897895 |
Why would we wish to start a 2nd edition of “Percolation theory for ?ow in porous media” only two years after the ?rst one was ?nished? There are essentially three reasons: 1) Reviews in the soil physics community have pointed out that the introductory material on percolation theory could have been more accessible. Our additional experience in teaching this material led us to believe that we could improve this aspect of the book. In the context of rewriting the ?rst chapter, however, we also expanded the discussion of Bethe lattices and their relevance for “classical” - ponents of percolation theory, thus giving more of a basis for the discussion of the relevance of hyperscaling. This addition, though it will not tend to make the book more accessible to hydrologists, was useful in making it a more complete reference, and these sections have been marked as being possible to omit in a ?rst reading. It also forced a division of the ?rst chapter into two. We hope that physicists without a background in percolation theory will now also ?nd the - troductory material somewhat more satisfactory. 2) We have done considerable further work on problems of electrical conductivity, thermal conductivity, and electromechanical coupling.
Complex Media and Percolation Theory
Title | Complex Media and Percolation Theory PDF eBook |
Author | Muhammad Sahimi |
Publisher | Springer |
Pages | 433 |
Release | 2021-10-02 |
Genre | Science |
ISBN | 9781071614563 |
Percolation theory describes the effects of the connectivity of microscopic or small-scale elements of a complex medium to its macroscopic or large-scale properties. It also describes the conditions under which there may be a continuously connected path of local elements across the medium. The point at which the path is formed is called the percolation threshold. Percolation theory also predicts that many macroscopic properties of complex media follow universal power laws near the percolation threshold that are independent of many microscopic features of such media. There are many applications of percolation theory across the natural sciences, from porous materials, to composite solids, complex networks, and biological systems. This book presents the essential elements of percolation theory, covers the problem of calculating the exponents that characterize the power laws that the percolation quantities follow near the percolation threshold, provides a clear description of the geometry of percolation clusters of the connected paths, and addresses several variations of percolation theory. In particular, bootstrap percolation, explosive percolation, and invasion percolation are featured, which expand the range of natural systems to which percolation may be applicable. In addition, coverage includes several important applications of percolation theory to a range of phenomena, ranging from electrical conductivity, thermopower, the Hall effect, and photoconductivity of disordered semiconductors, to flow, transport and reaction in porous media, geochemistry, biology, and ecology.
Mechanics of Oil and Gas Flow in Porous Media
Title | Mechanics of Oil and Gas Flow in Porous Media PDF eBook |
Author | Dang Li |
Publisher | Springer Nature |
Pages | 343 |
Release | 2020-08-17 |
Genre | Science |
ISBN | 9811573131 |
This book discusses various aspects of percolation mechanics. It starts with the driving forces and driving modes and then examines in detail the steady state percolation of single-phase incompressible fluids, percolation law of natural gas and percolation of non-Newtonian fluids. Progressing from simple to complex concepts, it also analyzes Darcy’s law, providing a basis for the study of reservoir engineering, oil recovery engineering and reservoir numerical simulation. It serves as a textbook for undergraduate students majoring in petroleum engineering, petroleum geology and groundwater engineering, and offers a valuable reference guide for graduate students, researchers and technical engineers engaged in oil and gas exploration and development.
Modelling of Flow and Transport in Fractal Porous Media
Title | Modelling of Flow and Transport in Fractal Porous Media PDF eBook |
Author | Jianchao Cai |
Publisher | Elsevier |
Pages | 274 |
Release | 2020-11-05 |
Genre | Science |
ISBN | 0128177985 |
This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. - Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials - Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils - Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures
Flow and Transport in Porous Media and Fractured Rock
Title | Flow and Transport in Porous Media and Fractured Rock PDF eBook |
Author | Muhammad Sahimi |
Publisher | John Wiley & Sons |
Pages | 635 |
Release | 2011-05-09 |
Genre | Science |
ISBN | 3527636706 |
In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject. Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.
Physics of Flow in Porous Media
Title | Physics of Flow in Porous Media PDF eBook |
Author | Jens Feder |
Publisher | Cambridge University Press |
Pages | 361 |
Release | 2022-10-06 |
Genre | Business & Economics |
ISBN | 1108839118 |
A comprehensive, stepwise introduction to the basic terminology, methods and theory of the physics of flow in porous media.
Percolation Theory for Flow in Porous Media
Title | Percolation Theory for Flow in Porous Media PDF eBook |
Author | Allen Hunt |
Publisher | Springer Science & Business Media |
Pages | 232 |
Release | 2005-09-15 |
Genre | Science |
ISBN | 9783540261100 |
The present monograph presents, for the first time, a unified and comprehensive introduction to some of the basic transport properties of porous media, such as electrical and hydraulic conductivity, air permeability and diffusion. The treatment is based on critical path analysis and the scaling of transport properties which are individually described as functions of saturation. At the same time, the book supplies a tutorial on percolation theory for hydrologists, providing them with the tools for solving actual problems. In turn, a separate chapter serves to introduces physicists to some of the language and complications of groundwater hydrology necessary for succesful modelling.