PDEs, Submanifolds and Affine Differential Geometry

PDEs, Submanifolds and Affine Differential Geometry
Title PDEs, Submanifolds and Affine Differential Geometry PDF eBook
Author Martin Wiehe
Publisher
Pages 228
Release 2002
Genre Affine differential geometry
ISBN

Download PDEs, Submanifolds and Affine Differential Geometry Book in PDF, Epub and Kindle

PDEs, Submanifolds and Affine Differential Geometry

PDEs, Submanifolds and Affine Differential Geometry
Title PDEs, Submanifolds and Affine Differential Geometry PDF eBook
Author Barbara Opozda
Publisher
Pages 284
Release 2005
Genre Affine differential geometry
ISBN

Download PDEs, Submanifolds and Affine Differential Geometry Book in PDF, Epub and Kindle

Global Affine Differential Geometry of Hypersurfaces

Global Affine Differential Geometry of Hypersurfaces
Title Global Affine Differential Geometry of Hypersurfaces PDF eBook
Author An-Min Li
Publisher Walter de Gruyter GmbH & Co KG
Pages 528
Release 2015-08-17
Genre Mathematics
ISBN 3110390906

Download Global Affine Differential Geometry of Hypersurfaces Book in PDF, Epub and Kindle

This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry – as differential geometry in general – has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces. The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.

Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern

Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern
Title Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern PDF eBook
Author Weihuan Chen
Publisher World Scientific
Pages 361
Release 2000-11-07
Genre Mathematics
ISBN 9814492035

Download Geometry And Topology Of Submanifolds X: Differential Geometry In Honor Of Professor S S Chern Book in PDF, Epub and Kindle

Contents:Progress in Affine Differential Geometry — Problem List and Continued Bibliography (T Binder & U Simon)On the Classification of Timelike Bonnet Surfaces (W H Chen & H Z Li)Affine Hyperspheres with Constant Affine Sectional Curvature (F Dillen et al.)Geometric Properties of the Curvature Operator (P Gilkey)On a Question of S S Chern Concerning Minimal Hypersurfaces of Spheres (I Hiric( & L Verstraelen)Parallel Pure Spinors on Pseudo-Riemannian Manifolds (I Kath)Twistorial Construction of Spacelike Surfaces in Lorentzian 4-Manifolds (F Leitner)Nirenberg's Problem in 90's (L Ma)A New Proof of the Homogeneity of Isoparametric Hypersurfaces with (g,m) = (6, 1) (R Miyaoka)Harmonic Maps and Negatively Curved Homogeneous Spaces (S Nishikawa)Biharmonic Morphisms Between Riemannian Manifolds (Y L Ou)Intrinsic Properties of Real Hypersurfaces in Complex Space Forms (P J Ryan)On the Nonexistence of Stable Minimal Submanifolds in Positively Pinched Riemannian Manifolds (Y B Shen & H Q Xu)Geodesic Mappings of the Ellipsoid (K Voss)η-Invariants and the Poincaré-Hopf Index Formula (W Zhang)and other papers Readership: Researchers in differential geometry and topology. Keywords:Conference;Proceedings;Berlin (Germany);Beijing (China);Geometry;Topology;Submanifolds X;Differential Geometry;Dedication

Introduction to Differential Geometry

Introduction to Differential Geometry
Title Introduction to Differential Geometry PDF eBook
Author Joel W. Robbin
Publisher Springer Nature
Pages 426
Release 2022-01-12
Genre Mathematics
ISBN 3662643405

Download Introduction to Differential Geometry Book in PDF, Epub and Kindle

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Symposium on the Differential Geometry of Submanifolds

Symposium on the Differential Geometry of Submanifolds
Title Symposium on the Differential Geometry of Submanifolds PDF eBook
Author Luc Vrancken
Publisher Lulu.com
Pages 266
Release 2008-06-30
Genre Mathematics
ISBN 1847990169

Download Symposium on the Differential Geometry of Submanifolds Book in PDF, Epub and Kindle

This book contains the proceedings of the «Symposium on differential geometry» which took place at the Université de Valenciennes et du Hainaut Cambrésis from July 3, 2007 until July 7, 2007.The main theme of the conference was the differential geometry of submanifolds. Special emphasis was put on the following topics:Lagrangian immersions, Minimal immersions and constant mean curvature immersions, Harmonic maps and harmonic morphisms, Variational problems, Affine differential geometry. This conference follows the tradition of the conferences in the series of « Geometry and Topology of Submanifolds », which started with the Luminy meeting in 1987 and then continued with various meetings at different places in Europe, such as amongst others Avignon, Leeds, Leuven, Brussels, Nordfjordeid, Berlin, Warszawa, Bedlewo and also in China (Beijing, 1998).

Cartan for Beginners

Cartan for Beginners
Title Cartan for Beginners PDF eBook
Author Thomas Andrew Ivey
Publisher American Mathematical Soc.
Pages 394
Release 2003
Genre Mathematics
ISBN 0821833758

Download Cartan for Beginners Book in PDF, Epub and Kindle

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.