PDE Toolbox Primer for Engineering Applications with MATLAB® Basics
Title | PDE Toolbox Primer for Engineering Applications with MATLAB® Basics PDF eBook |
Author | Leonid Burstein |
Publisher | CRC Press |
Pages | 374 |
Release | 2022-06-06 |
Genre | Technology & Engineering |
ISBN | 100058559X |
Partial differential equations (PDEs) describe technological phenomena and processes used for the analysis, design, and modeling of technical products. Solutions of spatial and transient PDEs are realized by using the PDE Toolbox included in the MATLAB® software. MATLAB® is introduced here as an essential foundation for PDE, and the Modeler of the PDE Toolbox, with appropriate explanatory solutions, is applied to engineering problems in mechanics, heat/mass transfer, tribology, materials science, physics, and biotechnology. The appendixes contain collections of commands and functions used to solve actual engineering problems. FEATURES Includes the PDE Modeler interface with example solutions of two- and three-dimensional PDEs Presents methodologies for all types of PDEs as representative of any engineering problem Describes the ordinate differential equation (ODE) solver for initial value and boundary value problems (IVP and BVP) through practical examples from mechanics and the thermodynamic properties of materials Covers the basics of MATLAB® to solve both ODEs and PDEs Reviews spatially the one-dimensional PDE solver with actual engineering examples PDE Toolbox Primer for Engineering Applications with MATLAB® Basics is aimed at scientists, students, professionals, practitioners, self-taught readers, and researchers who need concise and clear information to study and apply MATLAB® software and the PDE Toolbox in engineering.
A MATLAB® Primer for Technical Programming for Materials Science and Engineering
Title | A MATLAB® Primer for Technical Programming for Materials Science and Engineering PDF eBook |
Author | Leonid Burstein |
Publisher | Woodhead Publishing |
Pages | 286 |
Release | 2020-02-06 |
Genre | Technology & Engineering |
ISBN | 0128191163 |
A MATLAB® Primer for Technical Programming for Materials Science and Engineering draws on examples from the field, providing the latest information on this programming tool that is targeted towards materials science. The book enables non-programmers to master MATLAB® in order to solve problems in materials science, assuming only a modest mathematical background. In addition, the book introduces programming and technical concepts in a logical manner to help students use MATLAB® for subsequent projects. This title offers materials scientists who are non-programming specialists with a coherent and focused introduction to MATLAB®. - Provides the necessary background, alongside examples drawn from the field, to allow materials scientists to effectively master MATLAB® - Guides the reader through programming and technical concepts in a logical and coherent manner - Promotes a thorough working familiarity with MATLAB® for materials scientists - Gives the information needed to write efficient and compact programs to solve problems in materials science, tribology, mechanics of materials and other material-related disciplines
Solving PDEs in Python
Title | Solving PDEs in Python PDF eBook |
Author | Hans Petter Langtangen |
Publisher | Springer |
Pages | 152 |
Release | 2017-03-21 |
Genre | Computers |
ISBN | 3319524623 |
This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.
The Finite Element Method: Theory, Implementation, and Applications
Title | The Finite Element Method: Theory, Implementation, and Applications PDF eBook |
Author | Mats G. Larson |
Publisher | Springer Science & Business Media |
Pages | 403 |
Release | 2013-01-13 |
Genre | Computers |
ISBN | 3642332870 |
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
Programming for Computations - MATLAB/Octave
Title | Programming for Computations - MATLAB/Octave PDF eBook |
Author | Svein Linge |
Publisher | Springer |
Pages | 228 |
Release | 2016-08-01 |
Genre | Computers |
ISBN | 3319324527 |
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
The Finite Volume Method in Computational Fluid Dynamics
Title | The Finite Volume Method in Computational Fluid Dynamics PDF eBook |
Author | F. Moukalled |
Publisher | Springer |
Pages | 799 |
Release | 2015-08-13 |
Genre | Technology & Engineering |
ISBN | 3319168746 |
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.
Programming for Computations - Python
Title | Programming for Computations - Python PDF eBook |
Author | Svein Linge |
Publisher | Springer |
Pages | 244 |
Release | 2016-07-25 |
Genre | Computers |
ISBN | 3319324284 |
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.