A Course on Rough Paths

A Course on Rough Paths
Title A Course on Rough Paths PDF eBook
Author Peter K. Friz
Publisher Springer Nature
Pages 354
Release 2020-05-27
Genre Mathematics
ISBN 3030415562

Download A Course on Rough Paths Book in PDF, Epub and Kindle

With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH

Backward Stochastic Differential Equations

Backward Stochastic Differential Equations
Title Backward Stochastic Differential Equations PDF eBook
Author N El Karoui
Publisher CRC Press
Pages 236
Release 1997-01-17
Genre Mathematics
ISBN 9780582307339

Download Backward Stochastic Differential Equations Book in PDF, Epub and Kindle

This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus
Title Lévy Processes and Stochastic Calculus PDF eBook
Author David Applebaum
Publisher Cambridge University Press
Pages 461
Release 2009-04-30
Genre Mathematics
ISBN 1139477986

Download Lévy Processes and Stochastic Calculus Book in PDF, Epub and Kindle

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains

Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains
Title Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains PDF eBook
Author Petru A. Cioica
Publisher Logos Verlag Berlin GmbH
Pages 166
Release 2015-03-01
Genre Mathematics
ISBN 3832539204

Download Besov Regularity of Stochastic Partial Differential Equations on Bounded Lipschitz Domains Book in PDF, Epub and Kindle

Stochastic partial differential equations (SPDEs, for short) are the mathematical models of choice for space time evolutions corrupted by noise. Although in many settings it is known that the resulting SPDEs have a unique solution, in general, this solution is not given explicitly. Thus, in order to make those mathematical models ready to use for real life applications, appropriate numerical algorithms are needed. To increase efficiency, it would be tempting to design suitable adaptive schemes based, e.g., on wavelets. However, it is not a priori clear whether such adaptive strategies can outperform well-established uniform alternatives. Their theoretical justification requires a rigorous regularity analysis in so-called non-linear approximation scales of Besov spaces. In this thesis the regularity of (semi-)linear second order SPDEs of Itô type on general bounded Lipschitz domains is analysed. The non-linear approximation scales of Besov spaces are used to measure the regularity with respect to the space variable, the time regularity being measured first in terms of integrability and afterwards in terms of Hölder norms. In particular, it is shown that in specific situations the spatial Besov regularity of the solution in the non-linear approximation scales is generically higher than its corresponding classical Sobolev regularity. This indicates that it is worth developing spatially adaptive wavelet methods for solving SPDEs instead of using uniform alternatives.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations
Title Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF eBook
Author Haim Brezis
Publisher Springer Science & Business Media
Pages 600
Release 2010-11-02
Genre Mathematics
ISBN 0387709142

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations Book in PDF, Epub and Kindle

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Fourier Analysis and Nonlinear Partial Differential Equations

Fourier Analysis and Nonlinear Partial Differential Equations
Title Fourier Analysis and Nonlinear Partial Differential Equations PDF eBook
Author Hajer Bahouri
Publisher Springer Science & Business Media
Pages 530
Release 2011-01-03
Genre Mathematics
ISBN 3642168302

Download Fourier Analysis and Nonlinear Partial Differential Equations Book in PDF, Epub and Kindle

In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrödinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations.

Differential Equations Driven by Rough Paths

Differential Equations Driven by Rough Paths
Title Differential Equations Driven by Rough Paths PDF eBook
Author Terry J. Lyons
Publisher Springer
Pages 126
Release 2007-04-25
Genre Mathematics
ISBN 3540712852

Download Differential Equations Driven by Rough Paths Book in PDF, Epub and Kindle

Each year young mathematicians congregate in Saint Flour, France, and listen to extended lecture courses on new topics in Probability Theory. The goal of these notes, representing a course given by Terry Lyons in 2004, is to provide a straightforward and self supporting but minimalist account of the key results forming the foundation of the theory of rough paths.