Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models
Title Parameter Estimation in Stochastic Volatility Models PDF eBook
Author Jaya P. N. Bishwal
Publisher Springer Nature
Pages 634
Release 2022-08-06
Genre Mathematics
ISBN 3031038614

Download Parameter Estimation in Stochastic Volatility Models Book in PDF, Epub and Kindle

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Handbook of Modeling High-Frequency Data in Finance

Handbook of Modeling High-Frequency Data in Finance
Title Handbook of Modeling High-Frequency Data in Finance PDF eBook
Author Frederi G. Viens
Publisher John Wiley & Sons
Pages 468
Release 2011-12-20
Genre Business & Economics
ISBN 0470876883

Download Handbook of Modeling High-Frequency Data in Finance Book in PDF, Epub and Kindle

CUTTING-EDGE DEVELOPMENTS IN HIGH-FREQUENCY FINANCIAL ECONOMETRICS In recent years, the availability of high-frequency data and advances in computing have allowed financial practitioners to design systems that can handle and analyze this information. Handbook of Modeling High-Frequency Data in Finance addresses the many theoretical and practical questions raised by the nature and intrinsic properties of this data. A one-stop compilation of empirical and analytical research, this handbook explores data sampled with high-frequency finance in financial engineering, statistics, and the modern financial business arena. Every chapter uses real-world examples to present new, original, and relevant topics that relate to newly evolving discoveries in high-frequency finance, such as: Designing new methodology to discover elasticity and plasticity of price evolution Constructing microstructure simulation models Calculation of option prices in the presence of jumps and transaction costs Using boosting for financial analysis and trading The handbook motivates practitioners to apply high-frequency finance to real-world situations by including exclusive topics such as risk measurement and management, UHF data, microstructure, dynamic multi-period optimization, mortgage data models, hybrid Monte Carlo, retirement, trading systems and forecasting, pricing, and boosting. The diverse topics and viewpoints presented in each chapter ensure that readers are supplied with a wide treatment of practical methods. Handbook of Modeling High-Frequency Data in Finance is an essential reference for academics and practitioners in finance, business, and econometrics who work with high-frequency data in their everyday work. It also serves as a supplement for risk management and high-frequency finance courses at the upper-undergraduate and graduate levels.

Stochastic Calculus for Finance II

Stochastic Calculus for Finance II
Title Stochastic Calculus for Finance II PDF eBook
Author Steven Shreve
Publisher Springer
Pages 0
Release 2010-12-01
Genre Mathematics
ISBN 9781441923110

Download Stochastic Calculus for Finance II Book in PDF, Epub and Kindle

"A wonderful display of the use of mathematical probability to derive a large set of results from a small set of assumptions. In summary, this is a well-written text that treats the key classical models of finance through an applied probability approach....It should serve as an excellent introduction for anyone studying the mathematics of the classical theory of finance." --SIAM

The Heston Model and its Extensions in Matlab and C#

The Heston Model and its Extensions in Matlab and C#
Title The Heston Model and its Extensions in Matlab and C# PDF eBook
Author Fabrice D. Rouah
Publisher John Wiley & Sons
Pages 437
Release 2013-08-01
Genre Business & Economics
ISBN 1118695178

Download The Heston Model and its Extensions in Matlab and C# Book in PDF, Epub and Kindle

Tap into the power of the most popular stochastic volatility model for pricing equity derivatives Since its introduction in 1993, the Heston model has become a popular model for pricing equity derivatives, and the most popular stochastic volatility model in financial engineering. This vital resource provides a thorough derivation of the original model, and includes the most important extensions and refinements that have allowed the model to produce option prices that are more accurate and volatility surfaces that better reflect market conditions. The book's material is drawn from research papers and many of the models covered and the computer codes are unavailable from other sources. The book is light on theory and instead highlights the implementation of the models. All of the models found here have been coded in Matlab and C#. This reliable resource offers an understanding of how the original model was derived from Ricatti equations, and shows how to implement implied and local volatility, Fourier methods applied to the model, numerical integration schemes, parameter estimation, simulation schemes, American options, the Heston model with time-dependent parameters, finite difference methods for the Heston PDE, the Greeks, and the double Heston model. A groundbreaking book dedicated to the exploration of the Heston model—a popular model for pricing equity derivatives Includes a companion website, which explores the Heston model and its extensions all coded in Matlab and C# Written by Fabrice Douglas Rouah a quantitative analyst who specializes in financial modeling for derivatives for pricing and risk management Engaging and informative, this is the first book to deal exclusively with the Heston Model and includes code in Matlab and C# for pricing under the model, as well as code for parameter estimation, simulation, finite difference methods, American options, and more.

Semiparametric Modeling of Implied Volatility

Semiparametric Modeling of Implied Volatility
Title Semiparametric Modeling of Implied Volatility PDF eBook
Author Matthias R. Fengler
Publisher Springer Science & Business Media
Pages 232
Release 2005-12-19
Genre Business & Economics
ISBN 3540305912

Download Semiparametric Modeling of Implied Volatility Book in PDF, Epub and Kindle

This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.

Parameter Estimation in Stochastic Differential Equations

Parameter Estimation in Stochastic Differential Equations
Title Parameter Estimation in Stochastic Differential Equations PDF eBook
Author Jaya P. N. Bishwal
Publisher Springer
Pages 271
Release 2007-09-26
Genre Mathematics
ISBN 3540744487

Download Parameter Estimation in Stochastic Differential Equations Book in PDF, Epub and Kindle

Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.

Handbook of Volatility Models and Their Applications

Handbook of Volatility Models and Their Applications
Title Handbook of Volatility Models and Their Applications PDF eBook
Author Luc Bauwens
Publisher John Wiley & Sons
Pages 566
Release 2012-03-22
Genre Business & Economics
ISBN 1118272056

Download Handbook of Volatility Models and Their Applications Book in PDF, Epub and Kindle

A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.