29th International Symposium on Shock Waves 2
Title | 29th International Symposium on Shock Waves 2 PDF eBook |
Author | Riccardo Bonazza |
Publisher | Springer |
Pages | 822 |
Release | 2015-07-10 |
Genre | Science |
ISBN | 331916838X |
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
Mathematical and Computational Approaches in Advancing Modern Science and Engineering
Title | Mathematical and Computational Approaches in Advancing Modern Science and Engineering PDF eBook |
Author | Jacques Bélair |
Publisher | Springer |
Pages | 777 |
Release | 2016-08-10 |
Genre | Computers |
ISBN | 3319303791 |
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications. The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
Title | Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 PDF eBook |
Author | Marco L. Bittencourt |
Publisher | Springer |
Pages | 681 |
Release | 2017-11-07 |
Genre | Mathematics |
ISBN | 3319658700 |
This book features a selection of high-quality papers chosen from the best presentations at the International Conference on Spectral and High-Order Methods (2016), offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.
Computational Fluid Dynamics 2004
Title | Computational Fluid Dynamics 2004 PDF eBook |
Author | Clinton Groth |
Publisher | Springer Science & Business Media |
Pages | 853 |
Release | 2006-09-27 |
Genre | Technology & Engineering |
ISBN | 3540318011 |
Those interested in state of the art in computational fluid dynamics will find this publication a valuable source of reference. The contributions are drawn from The International Conference on Computational Fluid Dynamics (ICCFD) held in 2004. The conference is staged every two years and brings together physicists, mathematicians and engineers who review and share recent advances in mathematical and computational techniques for modeling fluid dynamics.
Discontinuous Galerkin Methods
Title | Discontinuous Galerkin Methods PDF eBook |
Author | Bernardo Cockburn |
Publisher | Springer Science & Business Media |
Pages | 468 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642597211 |
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.
Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere
Title | Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere PDF eBook |
Author | Xueshang Feng |
Publisher | Springer |
Pages | 785 |
Release | 2019-08-01 |
Genre | Science |
ISBN | 9811390819 |
The book covers intimately all the topics necessary for the development of a robust magnetohydrodynamic (MHD) code within the framework of the cell-centered finite volume method (FVM) and its applications in space weather study. First, it presents a brief review of existing MHD models in studying solar corona and the heliosphere. Then it introduces the cell-centered FVM in three-dimensional computational domain. Finally, the book presents some applications of FVM to the MHD codes on spherical coordinates in various research fields of space weather, focusing on the development of the 3D Solar-InterPlanetary space-time Conservation Element and Solution Element (SIP-CESE) MHD model and its applications to space weather studies in various aspects. The book is written for senior undergraduates, graduate students, lecturers, engineers and researchers in solar-terrestrial physics, space weather theory, modeling, and prediction, computational fluid dynamics, and MHD simulations. It helps readers to fully understand and implement a robust and versatile MHD code based on the cell-centered FVM.
The Finite Volume Method in Computational Fluid Dynamics
Title | The Finite Volume Method in Computational Fluid Dynamics PDF eBook |
Author | F. Moukalled |
Publisher | Springer |
Pages | 799 |
Release | 2015-08-13 |
Genre | Technology & Engineering |
ISBN | 3319168746 |
This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.