Parabolic Equations in Biology

Parabolic Equations in Biology
Title Parabolic Equations in Biology PDF eBook
Author Benoît Perthame
Publisher Springer
Pages 204
Release 2015-09-09
Genre Mathematics
ISBN 331919500X

Download Parabolic Equations in Biology Book in PDF, Epub and Kindle

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

Abstract Parabolic Evolution Equations and their Applications

Abstract Parabolic Evolution Equations and their Applications
Title Abstract Parabolic Evolution Equations and their Applications PDF eBook
Author Atsushi Yagi
Publisher Springer Science & Business Media
Pages 594
Release 2009-11-03
Genre Mathematics
ISBN 3642046312

Download Abstract Parabolic Evolution Equations and their Applications Book in PDF, Epub and Kindle

This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0

Transport Equations in Biology

Transport Equations in Biology
Title Transport Equations in Biology PDF eBook
Author Benoît Perthame
Publisher Springer Science & Business Media
Pages 206
Release 2006-12-14
Genre Science
ISBN 3764378425

Download Transport Equations in Biology Book in PDF, Epub and Kindle

This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.

Asymptotics of Elliptic and Parabolic PDEs

Asymptotics of Elliptic and Parabolic PDEs
Title Asymptotics of Elliptic and Parabolic PDEs PDF eBook
Author David Holcman
Publisher Springer
Pages 456
Release 2018-05-25
Genre Mathematics
ISBN 3319768956

Download Asymptotics of Elliptic and Parabolic PDEs Book in PDF, Epub and Kindle

This is a monograph on the emerging branch of mathematical biophysics combining asymptotic analysis with numerical and stochastic methods to analyze partial differential equations arising in biological and physical sciences. In more detail, the book presents the analytic methods and tools for approximating solutions of mixed boundary value problems, with particular emphasis on the narrow escape problem. Informed throughout by real-world applications, the book includes topics such as the Fokker-Planck equation, boundary layer analysis, WKB approximation, applications of spectral theory, as well as recent results in narrow escape theory. Numerical and stochastic aspects, including mean first passage time and extreme statistics, are discussed in detail and relevant applications are presented in parallel with the theory. Including background on the classical asymptotic theory of differential equations, this book is written for scientists of various backgrounds interested in deriving solutions to real-world problems from first principles.

Nonlinear PDEs

Nonlinear PDEs
Title Nonlinear PDEs PDF eBook
Author Marius Ghergu
Publisher Springer Science & Business Media
Pages 402
Release 2011-10-21
Genre Mathematics
ISBN 3642226647

Download Nonlinear PDEs Book in PDF, Epub and Kindle

The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.​

Parabolic Equations in Biology

Parabolic Equations in Biology
Title Parabolic Equations in Biology PDF eBook
Author Benoît Perthame
Publisher
Pages
Release 2015
Genre
ISBN 9783319195018

Download Parabolic Equations in Biology Book in PDF, Epub and Kindle

This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.

Second Order Parabolic Differential Equations

Second Order Parabolic Differential Equations
Title Second Order Parabolic Differential Equations PDF eBook
Author Gary M. Lieberman
Publisher World Scientific
Pages 472
Release 1996
Genre Mathematics
ISBN 9789810228835

Download Second Order Parabolic Differential Equations Book in PDF, Epub and Kindle

Introduction. Maximum principles. Introduction to the theory of weak solutions. Hölder estimates. Existence, uniqueness, and regularity of solutions. Further theory of weak solutions. Strong solutions. Fixed point theorems and their applications. Comparison and maximum principles. Boundary gradient estimates. Global and local gradient bounds. Hölder gradient estimates and existence theorems. The oblique derivative problem for quasilinear parabolic equations. Fully nonlinear equations. Introduction. Monge-Ampère and Hessian equations.