Pair-Correlation Effects in Many-Body Systems

Pair-Correlation Effects in Many-Body Systems
Title Pair-Correlation Effects in Many-Body Systems PDF eBook
Author Kristian Blom
Publisher Springer Nature
Pages 189
Release 2023-05-26
Genre Science
ISBN 3031296125

Download Pair-Correlation Effects in Many-Body Systems Book in PDF, Epub and Kindle

The laws of nature encompass the small, the large, the few, and the many. In this book, we are concerned with classical (i.e., not quantum) many-body systems, which refers to any microscopic or macroscopic system that contains a large number of interacting entities. The nearest-neighbor Ising model, originally developed in 1920 by Wilhelm Lenz, forms a cornerstone in our theoretical understanding of collective effects in classical many-body systems and is to date a paradigm in statistical physics. Despite its elegant and simplistic description, exact analytical results in dimensions equal and larger than two are difficult to obtain. Therefore, much work has been done to construct methods that allow for approximate, yet accurate, analytical solutions. One of these methods is the Bethe-Guggenheim approximation, originally developed independently by Hans Bethe and Edward Guggenheim in 1935. This approximation goes beyond the well-known mean field approximation and explicitly accounts for pair correlations between the spins in the Ising model. In this book, we embark on a journey to exploit the full capacity of the Bethe-Guggenheim approximation, in non-uniform and non-equilibrium settings. Throughout we unveil the non-trivial and a priori non-intuitive effects of pair correlations in the classical nearest-neighbor Ising model, which are taken into account in the Bethe-Guggenheim approximation and neglected in the mean field approximation.

Pair-Correlation Effects in Many-Body Systems

Pair-Correlation Effects in Many-Body Systems
Title Pair-Correlation Effects in Many-Body Systems PDF eBook
Author Kristian Blom
Publisher
Pages 0
Release 2023
Genre
ISBN 9783031296130

Download Pair-Correlation Effects in Many-Body Systems Book in PDF, Epub and Kindle

The laws of nature encompass the small, the large, the few, and the many. In this book, we are concerned with classical (i.e., not quantum) many-body systems, which refers to any microscopic or macroscopic system that contains a large number of interacting entities. The nearest-neighbor Ising model, originally developed in 1920 by Wilhelm Lenz, forms a cornerstone in our theoretical understanding of collective effects in classical many-body systems and is to date a paradigm for statistical physics. Despite its elegant and simplistic description, exact analytical results in dimensions equal and larger than two are difficult to obtain. Therefore, much work has been done to construct methods that allow for approximate, yet accurate, analytical solutions. One of these methods is the Bethe-Guggenheim approximation, originally developed independently by Hans Bethe and Edward Guggenheim in 1935. This approximation goes beyond the well-known mean field approximation and explicitly accounts for pair correlations between the spins in the Ising model. In this book, we embark on a journey to exploit the full capacity of the Bethe-Guggenheim approximation, in non-uniform and non-equilibrium settings. Throughout we unveil the non-trivial and a priori non-intuitive effects of pair correlations in the classical nearest-neighbor Ising model, which are taken into account in the Bethe-Guggenheim approximation and neglected in the mean field approximation.

Nuclear Science Abstracts

Nuclear Science Abstracts
Title Nuclear Science Abstracts PDF eBook
Author
Publisher
Pages 1296
Release 1974
Genre Nuclear energy
ISBN

Download Nuclear Science Abstracts Book in PDF, Epub and Kindle

Nuclear Science Abstracts

Nuclear Science Abstracts
Title Nuclear Science Abstracts PDF eBook
Author
Publisher
Pages 628
Release 1972
Genre Nuclear energy
ISBN

Download Nuclear Science Abstracts Book in PDF, Epub and Kindle

Relativistic Many-Body Theory

Relativistic Many-Body Theory
Title Relativistic Many-Body Theory PDF eBook
Author Ingvar Lindgren
Publisher Springer Science & Business Media
Pages 372
Release 2011-04-30
Genre Science
ISBN 1441983090

Download Relativistic Many-Body Theory Book in PDF, Epub and Kindle

This book gives a comprehensive account of relativistic many-body perturbation theory, based upon field theory. After some introductory chapters about time-independent and time dependent many-body perturbation theory (MBPT), the standard techniques of S-matrix and Green’s functions are reviewed. Next, the newly introduced covariant-evolution-operator method is described, which can be used, like the S-matrix method, for calculations in quantum electrodynamics (QED). Unlike the S-matrix method, this has a structure that is similar to that of MBPT and therefore can serve as basis for a unified theory. Such an approach is developed in the final chapters, and its equivalence to the Bethe-Salpeter equation is demonstrated. Possible applications are discussed and numerical illustrations given.

Local Structure from Diffraction

Local Structure from Diffraction
Title Local Structure from Diffraction PDF eBook
Author S.J.L. Billinge
Publisher Springer Science & Business Media
Pages 397
Release 2006-02-04
Genre Technology & Engineering
ISBN 0306470772

Download Local Structure from Diffraction Book in PDF, Epub and Kindle

This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science and engineering, with length scales ranging from Ångstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: thorpe @ pa.msu.edu East Lansing, Michigan PREFACE One of the most challenging problems in the study of structure is to characterize the atomic short-range order in materials. Long-range order can be determined with a high degree of accuracy by analyzing Bragg peak positions and intensities in data from single crystals or powders. However, information about short-range order is contained in the diffuse scattering intensity. This is difficult to analyze because it is low in absolute intensity (though the integrated intensity may be significant) and widely spread in reciprocal space.

Methods of Electronic Structure Theory

Methods of Electronic Structure Theory
Title Methods of Electronic Structure Theory PDF eBook
Author Henry F. Schaefer
Publisher Springer Science & Business Media
Pages 476
Release 2013-06-29
Genre Science
ISBN 1475708874

Download Methods of Electronic Structure Theory Book in PDF, Epub and Kindle

These two volumes deal with the quantum theory of the electronic structure of molecules. Implicit in the term ab initio is the notion that approximate solutions of Schrödinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In asense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those develop ing new theoretical and computational methods and models. Henry F Schaefer Vll Contents Contents of Volume 4 XIX Chapter 1. Gaussian Basis Sets for Molecular Calculations Thom. H. Dunning, Ir. and P. Ieffrey Hay 1. Introduction . . . . . . . . . . . . . . . . 1 1. 1. Slater Functions and the Hydrogen Moleeule 1 1. 2. Gaussian Functions and the Hydrogen Atom 3 2. Hartree-Fock Calculations on the First Row Atoms 5 2. 1. Valence States of the First Row Atoms 6 7 2. 2. Rydberg States of the First Row Atoms 9 2. 3.