Output Feedback Reinforcement Learning Control for Linear Systems

Output Feedback Reinforcement Learning Control for Linear Systems
Title Output Feedback Reinforcement Learning Control for Linear Systems PDF eBook
Author Syed Ali Asad Rizvi
Publisher Springer Nature
Pages 304
Release 2022-11-29
Genre Science
ISBN 303115858X

Download Output Feedback Reinforcement Learning Control for Linear Systems Book in PDF, Epub and Kindle

This monograph explores the analysis and design of model-free optimal control systems based on reinforcement learning (RL) theory, presenting new methods that overcome recent challenges faced by RL. New developments in the design of sensor data efficient RL algorithms are demonstrated that not only reduce the requirement of sensors by means of output feedback, but also ensure optimality and stability guarantees. A variety of practical challenges are considered, including disturbance rejection, control constraints, and communication delays. Ideas from game theory are incorporated to solve output feedback disturbance rejection problems, and the concepts of low gain feedback control are employed to develop RL controllers that achieve global stability under control constraints. Output Feedback Reinforcement Learning Control for Linear Systems will be a valuable reference for graduate students, control theorists working on optimal control systems, engineers, and applied mathematicians.

Robust Adaptive Dynamic Programming

Robust Adaptive Dynamic Programming
Title Robust Adaptive Dynamic Programming PDF eBook
Author Yu Jiang
Publisher John Wiley & Sons
Pages 220
Release 2017-04-13
Genre Science
ISBN 1119132657

Download Robust Adaptive Dynamic Programming Book in PDF, Epub and Kindle

A comprehensive look at state-of-the-art ADP theory and real-world applications This book fills a gap in the literature by providing a theoretical framework for integrating techniques from adaptive dynamic programming (ADP) and modern nonlinear control to address data-driven optimal control design challenges arising from both parametric and dynamic uncertainties. Traditional model-based approaches leave much to be desired when addressing the challenges posed by the ever-increasing complexity of real-world engineering systems. An alternative which has received much interest in recent years are biologically-inspired approaches, primarily RADP. Despite their growing popularity worldwide, until now books on ADP have focused nearly exclusively on analysis and design, with scant consideration given to how it can be applied to address robustness issues, a new challenge arising from dynamic uncertainties encountered in common engineering problems. Robust Adaptive Dynamic Programming zeros in on the practical concerns of engineers. The authors develop RADP theory from linear systems to partially-linear, large-scale, and completely nonlinear systems. They provide in-depth coverage of state-of-the-art applications in power systems, supplemented with numerous real-world examples implemented in MATLAB. They also explore fascinating reverse engineering topics, such how ADP theory can be applied to the study of the human brain and cognition. In addition, the book: Covers the latest developments in RADP theory and applications for solving a range of systems’ complexity problems Explores multiple real-world implementations in power systems with illustrative examples backed up by reusable MATLAB code and Simulink block sets Provides an overview of nonlinear control, machine learning, and dynamic control Features discussions of novel applications for RADP theory, including an entire chapter on how it can be used as a computational mechanism of human movement control Robust Adaptive Dynamic Programming is both a valuable working resource and an intriguing exploration of contemporary ADP theory and applications for practicing engineers and advanced students in systems theory, control engineering, computer science, and applied mathematics.

Handbook of Learning and Approximate Dynamic Programming

Handbook of Learning and Approximate Dynamic Programming
Title Handbook of Learning and Approximate Dynamic Programming PDF eBook
Author Jennie Si
Publisher John Wiley & Sons
Pages 670
Release 2004-08-02
Genre Technology & Engineering
ISBN 9780471660545

Download Handbook of Learning and Approximate Dynamic Programming Book in PDF, Epub and Kindle

A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles

Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles
Title Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles PDF eBook
Author Draguna L. Vrabie
Publisher IET
Pages 305
Release 2013
Genre Computers
ISBN 1849194890

Download Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles Book in PDF, Epub and Kindle

The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.

Reinforcement Learning and Approximate Dynamic Programming for Feedback Control

Reinforcement Learning and Approximate Dynamic Programming for Feedback Control
Title Reinforcement Learning and Approximate Dynamic Programming for Feedback Control PDF eBook
Author Frank L. Lewis
Publisher John Wiley & Sons
Pages 498
Release 2013-01-28
Genre Technology & Engineering
ISBN 1118453972

Download Reinforcement Learning and Approximate Dynamic Programming for Feedback Control Book in PDF, Epub and Kindle

Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.

Handbook of Reinforcement Learning and Control

Handbook of Reinforcement Learning and Control
Title Handbook of Reinforcement Learning and Control PDF eBook
Author Kyriakos G. Vamvoudakis
Publisher Springer Nature
Pages 833
Release 2021-06-23
Genre Technology & Engineering
ISBN 3030609901

Download Handbook of Reinforcement Learning and Control Book in PDF, Epub and Kindle

This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.

Proceedings of 2021 Chinese Intelligent Systems Conference

Proceedings of 2021 Chinese Intelligent Systems Conference
Title Proceedings of 2021 Chinese Intelligent Systems Conference PDF eBook
Author Yingmin Jia
Publisher Springer Nature
Pages 895
Release 2021-10-07
Genre Technology & Engineering
ISBN 9811663246

Download Proceedings of 2021 Chinese Intelligent Systems Conference Book in PDF, Epub and Kindle

This book presents the proceedings of the 17th Chinese Intelligent Systems Conference, held in Fuzhou, China, on Oct 16-17, 2021. It focuses on new theoretical results and techniques in the field of intelligent systems and control. This is achieved by providing in-depth study on a number of major topics such as Multi-Agent Systems, Complex Networks, Intelligent Robots, Complex System Theory and Swarm Behavior, Event-Triggered Control and Data-Driven Control, Robust and Adaptive Control, Big Data and Brain Science, Process Control, Intelligent Sensor and Detection Technology, Deep learning and Learning Control Guidance, Navigation and Control of Flight Vehicles and so on. The book is particularly suited for readers who are interested in learning intelligent system and control and artificial intelligence. The book can benefit researchers, engineers, and graduate students.