Oscillation Theory of Delay Differential Equations
Title | Oscillation Theory of Delay Differential Equations PDF eBook |
Author | I. Győri |
Publisher | Clarendon Press |
Pages | 392 |
Release | 1991 |
Genre | Mathematics |
ISBN |
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
Oscillation Theory for Neutral Differential Equations with Delay
Title | Oscillation Theory for Neutral Differential Equations with Delay PDF eBook |
Author | D.D Bainov |
Publisher | CRC Press |
Pages | 296 |
Release | 1991-01-01 |
Genre | Mathematics |
ISBN | 9780750301428 |
With neutral differential equations, any lack of smoothness in initial conditions is not damped and so they have proven to be difficult to solve. Until now, there has been little information to help with this problem. Oscillation Theory for Neutral Differential Equations with Delay fills a vacuum in qualitative theory of functional differential equations of neutral type. With much of the presented material previously unavailable outside Eastern Europe, this authoritative book provides a stimulus to research the oscillatory and asymptotic properties of these equations. It examines equations of first, second, and higher orders as well as the asymptotic behavior for tending toward infinity. These results are then generalized for partial differential equations of neutral type. The book also describes the historical development of the field and discusses applications in mathematical models of processes and phenomena in physics, electrical control and engineering, physical chemistry, and mathematical biology. This book is an important tool not only for mathematicians, but also for specialists in many fields including physicists, engineers, and biologists. It may be used as a graduate-level textbook or as a reference book for a wide range of subjects, from radiophysics to electrical and control engineering to biological science.
Nonoscillation and Oscillation Theory for Functional Differential Equations
Title | Nonoscillation and Oscillation Theory for Functional Differential Equations PDF eBook |
Author | Ravi P. Agarwal |
Publisher | CRC Press |
Pages | 400 |
Release | 2004-08-30 |
Genre | Mathematics |
ISBN | 0203025741 |
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
Oscillation Theory for Functional Differential Equations
Title | Oscillation Theory for Functional Differential Equations PDF eBook |
Author | Lynn Erbe |
Publisher | Routledge |
Pages | 504 |
Release | 2017-10-02 |
Genre | Mathematics |
ISBN | 135142632X |
Examines developments in the oscillatory and nonoscillatory properties of solutions for functional differential equations, presenting basic oscillation theory as well as recent results. The book shows how to extend the techniques for boundary value problems of ordinary differential equations to those of functional differential equations.
Nonoscillation Theory of Functional Differential Equations with Applications
Title | Nonoscillation Theory of Functional Differential Equations with Applications PDF eBook |
Author | Ravi P. Agarwal |
Publisher | Springer Science & Business Media |
Pages | 526 |
Release | 2012-04-23 |
Genre | Mathematics |
ISBN | 1461434556 |
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.
Generalized Solutions of Functional Differential Equations
Title | Generalized Solutions of Functional Differential Equations PDF eBook |
Author | Joseph Wiener |
Publisher | World Scientific |
Pages | 428 |
Release | 1993 |
Genre | Mathematics |
ISBN | 9789810212070 |
The need to investigate functional differential equations with discontinuous delays is addressed in this book. Recording the work and findings of several scientists on differential equations with piecewise continuous arguments over the last few years, this book serves as a useful source of reference. Great interest is placed on discussing the stability, oscillation and periodic properties of the solutions. Considerable attention is also given to the study of initial and boundary-value problems for partial differential equations of mathematical physics with discontinuous time delays. In fact, a large part of the book is devoted to the exploration of differential and functional differential equations in spaces of generalized functions (distributions) and contains a wealth of new information in this area. Each topic discussed appears to provide ample opportunity for extending the known results. A list of new research topics and open problems is also included as an update.
Theory of Third-Order Differential Equations
Title | Theory of Third-Order Differential Equations PDF eBook |
Author | Seshadev Padhi |
Publisher | Springer Science & Business Media |
Pages | 515 |
Release | 2013-10-16 |
Genre | Mathematics |
ISBN | 8132216148 |
This book discusses the theory of third-order differential equations. Most of the results are derived from the results obtained for third-order linear homogeneous differential equations with constant coefficients. M. Gregus, in his book written in 1987, only deals with third-order linear differential equations. These findings are old, and new techniques have since been developed and new results obtained. Chapter 1 introduces the results for oscillation and non-oscillation of solutions of third-order linear differential equations with constant coefficients, and a brief introduction to delay differential equations is given. The oscillation and asymptotic behavior of non-oscillatory solutions of homogeneous third-order linear differential equations with variable coefficients are discussed in Ch. 2. The results are extended to third-order linear non-homogeneous equations in Ch. 3, while Ch. 4 explains the oscillation and non-oscillation results for homogeneous third-order nonlinear differential equations. Chapter 5 deals with the z-type oscillation and non-oscillation of third-order nonlinear and non-homogeneous differential equations. Chapter 6 is devoted to the study of third-order delay differential equations. Chapter 7 explains the stability of solutions of third-order equations. Some knowledge of differential equations, analysis and algebra is desirable, but not essential, in order to study the topic.