Orthogonal Polynomials and Painlevé Equations

Orthogonal Polynomials and Painlevé Equations
Title Orthogonal Polynomials and Painlevé Equations PDF eBook
Author Walter Van Assche
Publisher Cambridge University Press
Pages 192
Release 2018
Genre Mathematics
ISBN 1108441947

Download Orthogonal Polynomials and Painlevé Equations Book in PDF, Epub and Kindle

There are a number of intriguing connections between Painlev equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painlev equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painlev transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painlev equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painlev equations.

Orthogonal Polynomials and Special Functions

Orthogonal Polynomials and Special Functions
Title Orthogonal Polynomials and Special Functions PDF eBook
Author Francisco Marcellàn
Publisher Springer Science & Business Media
Pages 432
Release 2006-06-19
Genre Mathematics
ISBN 3540310622

Download Orthogonal Polynomials and Special Functions Book in PDF, Epub and Kindle

Special functions and orthogonal polynomials in particular have been around for centuries. Can you imagine mathematics without trigonometric functions, the exponential function or polynomials? In the twentieth century the emphasis was on special functions satisfying linear differential equations, but this has now been extended to difference equations, partial differential equations and non-linear differential equations. The present set of lecture notes containes seven chapters about the current state of orthogonal polynomials and special functions and gives a view on open problems and future directions. The topics are: computational methods and software for quadrature and approximation, equilibrium problems in logarithmic potential theory, discrete orthogonal polynomials and convergence of Krylov subspace methods in numerical linear algebra, orthogonal rational functions and matrix orthogonal rational functions, orthogonal polynomials in several variables (Jack polynomials) and separation of variables, a classification of finite families of orthogonal polynomials in Askey’s scheme using Leonard pairs, and non-linear special functions associated with the Painlevé equations.

Orthogonal Polynomials

Orthogonal Polynomials
Title Orthogonal Polynomials PDF eBook
Author Mama Foupouagnigni
Publisher Springer Nature
Pages 683
Release 2020-03-11
Genre Mathematics
ISBN 3030367444

Download Orthogonal Polynomials Book in PDF, Epub and Kindle

This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.

Frontiers In Orthogonal Polynomials And Q-series

Frontiers In Orthogonal Polynomials And Q-series
Title Frontiers In Orthogonal Polynomials And Q-series PDF eBook
Author M Zuhair Nashed
Publisher World Scientific
Pages 577
Release 2018-01-12
Genre Mathematics
ISBN 981322889X

Download Frontiers In Orthogonal Polynomials And Q-series Book in PDF, Epub and Kindle

This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.

Discrete Painlevé Equations

Discrete Painlevé Equations
Title Discrete Painlevé Equations PDF eBook
Author Nalini Joshi
Publisher American Mathematical Soc.
Pages 154
Release 2019-05-30
Genre Mathematics
ISBN 1470450380

Download Discrete Painlevé Equations Book in PDF, Epub and Kindle

Discrete Painlevé equations are nonlinear difference equations, which arise from translations on crystallographic lattices. The deceptive simplicity of this statement hides immensely rich mathematical properties, connecting dynamical systems, algebraic geometry, Coxeter groups, topology, special functions theory, and mathematical physics. This book necessarily starts with introductory material to give the reader an accessible entry point to this vast subject matter. It is based on lectures that the author presented as principal lecturer at a Conference Board of Mathematical Sciences and National Science Foundation conference in Texas in 2016. Instead of technical theorems or complete proofs, the book relies on providing essential points of many arguments through explicit examples, with the hope that they will be useful for applied mathematicians and physicists.

Painleve Transcendents

Painleve Transcendents
Title Painleve Transcendents PDF eBook
Author A. S. Fokas
Publisher American Mathematical Soc.
Pages 570
Release 2006
Genre Mathematics
ISBN 082183651X

Download Painleve Transcendents Book in PDF, Epub and Kindle

At the turn of the twentieth century, the French mathematician Paul Painleve and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painleve I-VI. Although these equations were initially obtainedanswering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painleve transcendents (i.e., the solutionsof the Painleve equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points, play a crucial role in the applications of these functions. It is shown in this book, that even though the six Painleve equations are nonlinear, it is still possible, using a new technique called theRiemann-Hilbert formalism, to obtain analogous explicit formulas for the Painleve transcendents. This striking fact, apparently unknown to Painleve and his contemporaries, is the key ingredient for the remarkable applicability of these ``nonlinear special functions''. The book describes in detail theRiemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painleve functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painleve equations and related areas.

Classical and Quantum Orthogonal Polynomials in One Variable

Classical and Quantum Orthogonal Polynomials in One Variable
Title Classical and Quantum Orthogonal Polynomials in One Variable PDF eBook
Author Mourad Ismail
Publisher Cambridge University Press
Pages 748
Release 2005-11-21
Genre Mathematics
ISBN 9780521782012

Download Classical and Quantum Orthogonal Polynomials in One Variable Book in PDF, Epub and Kindle

The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.